Conjunctive and Boolean grammars:

the true general case of the context-free grammars™

Alexander Okhotin!
Department of Mathematics and Statistics, University of Turku, Turku FI-20014, Finland

Abstract

Conjunctive grammars extend the definition of a context-free grammar by allowing a conjunction operation in the rules;
Boolean grammars are further equipped with an explicit negation. These grammars maintain the main principle of
the context-free grammars, that of defining syntactically correct strings inductively from their substrings, but lift the
restriction of using disjunction only. This paper surveys the results on conjunctive and Boolean grammars obtained
over the last decade, comparing them to the corresponding results for ordinary context-free grammars and their main
subfamilies. Much attention is given to parsing algorithms, most of which are inherited from the case of ordinary context-
free grammars without increasing their computational complexity. The intended readership includes any computer
scientists looking for a compact and accessible description of this formal model and its properties, as well as for a
general outlook on formal grammars. The paper is also addressed to theoretical computer scientists seeking a subject
for research; an account of pure theoretical research in the area presented in this paper is accompanied by a list of
significant open problems, with an award offered for the first correct solution of each problem. Several directions for
future investigation are proposed.

Key words: Formal languages, context-free grammars, conjunctive grammars, Boolean grammars, parsing, language
equations

Contents [Basic parsing algorithms| 17
p.1 Cubic-time tabular parsing] 17
(1__Introductionl 2 5.2 Square-time parsing for unambiguous gram- |
. —— ®
M_}M&rammars‘l _ 4 b.3 Generalized LR parsing] 18
|2.1 | hree equivalent definitions| 4 EZ R 1 0. . 20
2.2 Examples 0oL 6
2.3 Normal forms/ 8 [6__Advanced approaches to parsing| 21
6.1 arsing by matrix multiplication| 21
8_Boolean grammars| 9 6.2 Parsing by convolution for unary inputs] . . 22
B Intuitive definitionl
5.1 Infuitive definition 9 [6.3 On parallel parsing] 23
[3.2 Definition by language equations| 10 B4 Space complexity] . - » « « « o oo 24
[3.3 Definition by a well-founded fixpoint| 11
[3.4 Parse trees and ambiguity| 13 [Theoretical topics| 24
7.1 Grammars over a one-symbol alphabet|f. . . 24
15 [7.2__Descriptional complexity|. 25
[4.1 Representation by trellis automatal 15 73 ndecidable Propertios] . « - « - « .« 2
4.2 Examples| 16
43 Dimitationsl 16 [Comparison of formal grammars| 27
[8.1 Hierarchy of language families|. 27
*This paper supersedes the earlier surveys, “An overview of con- 8.2 OS.u.I‘e Lo ertles- """"""""" 28
junctive grammars” (Bulletin of the EATCS, 2004) and “Nine open 8.3 ecision propblems| e . 30
problems for conjunctive and Boolean grammars” (Bulletin of the
EATCS, 2007). 9__Research directions| 30
Email addresses: alexander.okhotin@utu.fi (Alexander [T Nine theoretical problems] 30
Okhotin)
ISupported by the Academy of Finland under grants 134860 and B-2_ Further topics|. 33
257857.

Preprint submitted to Elsevier May 31, 2013

1. Introduction

Syntax of languages, both natural and artificial, is de-
fined inductively, in the sense that syntactic properties of
strings of symbols are logically determined by the prop-
erties of their substrings. A grammar of a particular lan-
guage gives names to these syntactic properties, and ex-
plains, how shorter strings with certain properties can be
concatenated to obtain longer strings with another prop-
erty. For instance, a rule of a hypothetical grammar for a
natural language may say that a subject followed by a pred-
icate is a sentence; the form of a subject and a predicate is
defined by other rules of the grammar. Similarly, a gram-
mar for a programming language may define a loop state-
ment as a keyword while followed by an expression and a
statement (where the latter may, in particular, be another
loop statement). An abstract language {a™b™|n > 0} over
an alphabet {a, b} is completely defined by saying that a
string belongs to this language if and only if it is either an
empty sequence of symbols, or a string of the form awb,
where w is a string belonging to this language.

Definitions of this kind are naturally given when the
syntax of any language needs to be clearly described, such
as in the textbook on the English grammar by Reed and
Kellogg [121] or in the first description of the Algol pro-
gramming language [I19]. Following Chomsky’s [15] influ-
ential works, such definitions became known as context-free
grammoars, reflecting the fact that syntactic properties of a
substring do not depend on the context, in which it occurs.
The form of the rules was fixed to

A= X1... Xy, (*)

where the symbol A represents a syntactic notion defined
in the grammar, such as a sentence or a loop statement
(these auxiliary notions are called “nonterminal symbols”
for historical reasons), and each symbol X; may be another
nonterminal symbol or a symbol of the target alphabet. A
rule @ means that every string representable as a concate-
nation X ... X, therefore has the property A. Returning
to the above examples, the hypothetical grammar for a
natural language has a rule Sentence — Subject Predicate,
while the grammar for the abstract language {a"b"|n > 0}
consists of two rules, S — aSb and S — ¢ (where € denotes
the empty string), and represents a complete inductive def-
inition.

Context-free grammars may be thought of as a logic
for inductive descriptions of syntax, in which the proposi-
tional connectives available for combining syntactical con-
ditions are restricted to disjunction only. Indeed, having
multiple rules for a single nonterminal A essentially rep-
resents disjunction: two rules A — « and A — [mean
that a string has the property A if and only if it is repre-
sentable as « or as 3. Any other Boolean operations, such
as conjunction and negation, are not expressible using or-
dinary context-free grammars: that is, there is no general
way for specifying all strings that satisfy a condition «
and at the same time another condition 3, and no way to

denote the set of strings that do not satisfy a condition
«. Furthermore, it is well-known that intersection of two
context-free languages or the complement of a context-free
language need not be context-free [126]; in other words, in
this particular logic, conjunction or negation cannot be
represented through disjunction only.

This omission in the formalism suggests the idea of
defining a more general logic, which would maintain the
main principles behind the context-free grammars, but at
the same time extend the set of available propositional con-
nectives. The result could then be regarded as a comple-
tion of the incomplete standard definition of context-free
grammars. Early attempts in this direction were made by
Latta and Wall [68] and by Heilbrunner and Schmitz [39],
who proposed formalisms for specifying Boolean combina-
tions of context-free languages. Latta and Wall [68], in
particular, argued for the relevance of their formalism to
linguistics. However, the use of conjunction and negation
in these grammars was heavily restricted, and one still
could not use them as freely as the disjunction.

An extension of the definition of context-free grammars
featuring unrestricted conjunction, introduced by the au-
thor [83], is known as a conjunctive grammar. In these
grammars, the conjunction of two syntactical conditions
can be directly expressed in the form of a rule

A—)Xl...X[&Yl...Ym,

which asserts that every string representable both as
Xq...X, and as Y7 ...Y,, therefore has the property A.
The more general Boolean grammars [94] further extend
the definition by allowing an explicit negation, that is,
every Boolean operation is directly expressible in their
formalism. For instance, the set of strings representable
as Xp...Xy, and at the same time not representable as
Y;...Y,,, can be written as a rule

A—)Xl...Xg&ﬁyl...Ym.

Both types of grammars remain essentially context-free,
in the sense, that the deduction of the properties of a
string does not depend on the context, where it occurs;
the properties of a string are defined as a function of the
properties of the substrings, into which the string can
be split. Therefore, as rightfully noted by Kountourio-
tis et al. [63], “conjunctive context-free grammars” and
“Boolean context-free grammars” would be appropriate
names for these models. Along with most of the litera-
ture, this paper assumes the shorter names, yet refers to
the fragment of Boolean grammars featuring the disjunc-
tion only as to the ordinary context-free grammars.

All semiformal interpretations of rules given so far show
the intended meaning of grammars, but are not yet def-
initions in the mathematical sense. Viewing grammars
as a logic, the most direct approach for defining their se-
mantics is by introducing a deduction of elementary state-
ments of the form “string w has property A”, which are

inferred from each other according to the rules of the gram-
mar. This general approach may be regarded as folklore;
in particular, it was used by Sikkel [129] to explain com-
putations carried out by parsers. Alternatively, the same
logical dependencies can be represented by interpreting a
grammar as a system of equations with formal languages as
unknowuns, as done by Ginsburg and Rice [30]. Finally, the
most widespread definition of ordinary context-free gram-
mars, given by Chomsky [I5], is by string rewriting, when
a rule A — « is regarded as a production for rewriting
a symbol A with a substring «, so that an abstract sym-
bol for a sentence is eventually rewritten into an actual
sentence. However, it must be stressed that even though
the definition by rewriting is indeed the simplest one, it
is nothing more than a convenient characterization, which
leaves behind the true nature of formal grammars: that is,
logical dependence between items of the form “string w has
property A”. Identifying formal grammars with rewriting
systems is a grave error in judgment.

A conjunctive grammar can be defined in the same
three ways as an ordinary context-free grammar: by a de-
duction system [95] with appropriately extended inference
rules, by language equations [87) involving the intersection
operation, and by rewriting [83], which is augmented to a
special kind of term rewriting. These definitions are ex-
plained in detail in Section [2] of this survey, along with
several characteristic examples of conjunctive grammars,
which demonstrate, how conjunction can be put to use in
the well-known setting of inductive definitions of syntax.

The definition of Boolean grammars is more compli-
cated, because a grammar may express a contradiction of
the form A — —A, which states that a string has the prop-
erty A if and only if it does not have this property. Thus,
for Boolean grammars, the dependence of items of the form
“string w has property A” has a more complicated form,
which calls for being expressed by equations. The sim-
pler approach to the definition uses a system of language
equations, in which the negation is interpreted by com-
plementation, and imposes a certain condition upon this
system, which ensures that it has a unique solution; this
unique solution then defines the meaning of a grammar.
A more general definition was given by Kountouriotis et
al. [62], who interpreted a Boolean grammar in terms of
three-valued languages, so that a string may belong to
a language, not belong to it, or have an undetermined
membership status. Both methods are explained in Sec-
tion[3] There is no known definition of Boolean grammars
by rewriting.

This survey paper is aimed to present the research on
conjunctive and Boolean grammars carried out over the
last decade, and to justify the thesis that these gram-
mars are the true general case of the context-free gram-
mars. The crucial points in support of this statement are
that, on the one hand, conjunctive and Boolean grammars
maintain the main inductive principles behind the ordi-
nary context-free grammars, which account for their in-
tuitive clarity and suitability for representing syntax, and

only offer additional logical connectives within the same
framework; these further expressive means allow giving
meaningful descriptions of quite a few syntactic constructs
not representable by ordinary context-free grammars. On
the other hand, this extra power does not damage the
crucial properties of context-free grammars: the intuitive
clarity of descriptions is preserved, the upper bounds on
time complexity remain the same, and most of the pars-
ing algorithms are directly inherited from the context-free
case. In particular, the basic bottom-up parsing algo-
rithms for ordinary context-free grammars of the general
form, such as the Cocke-Kasami—Younger [59, [143] and
its variants [33] [60, [138], extend to Boolean grammars so
smoothly and obviously, that one can hardly see any reason
for limiting logical connectives in a grammar to disjunction
only. Applying some other algorithms, such as the Lang—
Tomita generalized LR [65] [I36] and the recursive descent,
to Boolean grammars requires elaborating their flow con-
trol, but, in general, the elaboration amounts to having a
parser compute conjunction and negation, wherever these
operations occur in the grammar.

Although conjunctive and Boolean grammars inherit
many practical properties of ordinary context-free gram-
mars, they have some essential differences in their theoreti-
cal properties. One of these differences concerns sublinear-
time parallel recognition algorithms operating on a cir-
cuit: such algorithms are known for ordinary context-free
grammars [124] [12] 125], but most likely do not exist al-
ready for conjunctive grammars, since these grammars are
capable of representing some P-complete languages. An-
other difference concerns the decision problems: for an
ordinary context-free grammar, one can effectively test
whether it generates a non-empty language, but it is un-
decidable whether a given grammar generates the set of
all strings; both problems are undecidable for conjunc-
tive grammars. Yet another difference concerns grammars
over a one-symbol alphabet: while ordinary context-free
grammars are limited to regular subsets of a*, conjunc-
tive grammars can generate a wide variety of one-symbol
languages [49, [0, [B1].

The last topic of this survey is summarizing the proper-
ties of conjunctive and Boolean grammars, and comparing
them with the properties of other important families of
formal grammars. Considering all types of grammars to-
gether, and understanding conjunctive and Boolean gram-
mars as an essential part of the theory of formal grammars,
leads to a new outlook on grammars as such. This new out-
look begins with a new classification of meaningful families
of formal grammars, done in terms of the amount of ambi-
guity and nondeterminism, various motivated restrictions
on the form of rules (such as linear concatenation), and
the set of allowed logical connectives (limited to disjunc-
tion alone in ordinary context-free grammars).

The proposed classification of grammars notably ig-
nores the first and still the most well-known classifica-
tion of families of formal languages: the Chomsky hier-
archy. Why is it ignored? Chomsky’s hierarchy is com-

prised of the regular languages (“type 3”), the context-free
languages (“type 2”), the nondeterministic linear space
(“type 17) and the recursively enumerable sets (“type 07).
These are the families of languages considered in the early
days of computer science by Chomsky [15], who had for-
malized the intuitive notion of a formal grammar using
string-rewriting systems, and then attempted to imple-
ment further linguistic ideas by altering this definition.
This had a surprising outcome: though none of the mod-
ifications had anything to do with syntax, all three of
them turned out to be important models of computa-
tion: "type 07 is a reformulation of a nondeterministic
Turing machine, “type 3” reformulates nondeterministic
finite automata, and “type 17 became the first compu-
tational complexity class to be ever considered. Putting
these three models of computability, along with the basic
model of syntax, within a single framework had a signif-
icant impact on the early development of the theory of
computation, and Chomsky’s hierarchy remains a mile-
stone in the history of computer science. However, as
far as models of syntax are being concerned, this hier-
archy did not serve its purpose. Despite decades of sub-
sequent laborious studies, the research in string-rewriting
systems centered around context-free rewriting revealed no
other viable model of syntax besides the context-free gram-
mar. This leads to a conclusion that the representation of
context-free grammars by string rewriting is a unique co-
incidence, rather than a systematic association between
rewriting and grammars. Furthermore, the ungrammati-
cal levels of the Chomsky hierarchy (“type 1”7 and “type
0”) are useless even as a point of reference, because mean-
ingful syntax has complexity much below NSPACE(n). In
spite of its historical importance, the Chomsky hierarchy
is hardly relevant anymore.

The research on formal grammars carried out over
the last fifty years revealed quite a few important fam-
ilies of formal grammars, obtained by restricting ordi-
nary context-free grammars: LR(1) grammars (and the
deterministic context-free languages they generate), linear
grammars, unambiguous grammars, etc. These families
form the basis of the proposed hierarchy of formal gram-
mars, which is then extended towards the conjunctive and
Boolean grammars, as well as to their subfamilies defined
by analogy with the subfamilies of ordinary context-free
grammars: such as, for instance, linear conjunctive gram-
mars or unambiguous Boolean grammars. In Section[8] all
families in the hierarchy are compared in terms of their ex-
pressive power, closure properties under basic operations
and the decidability and complexity of various properties.
The expressive power of different grammars is furthermore
related to the computational complexity classes between
NC! and P.

The survey is concluded with some suggested direc-
tions for research on conjunctive and Boolean grammars,
and on formal grammars in general. First, there is a list
of significant theoretical open problems, with an award of
$360 Canadian offered by the author [I02] for the first

correct solution of each problem. Nine problems were
originally stated in 2006; since then, two problems were
solved [49 [105], and, at the time of writing, seven re-
main open. This survey includes the statements of all
problems, and briefly comments on possible approaches
to them. Furthermore, some general questions worth in-
vestigation are suggested, including possible discovery of
new variants of formal grammars, as well as implementa-
tion and application of conjunctive and Boolean grammars
as they are.

2. Conjunctive grammars

2.1. Three equivalent definitions

A conjunctive grammar is G =

(3, N, R, S), in which:

a quadruple

e Y is the alphabet of the language being defined, that
is, a finite set of symbols, from which the strings in
the language are built;

e N is a finite set of auxiliary notions used in the gram-
mar, each of them represents a syntactic property
that a string in ¥* may have or not have; for histor-
ical reasons, they are called nonterminal symbols or
nonterminals, even though this name ought to have
been deprecated long ago;

e R is a finite set of grammar rules, each of the form
A= a1 &...&am, (1)

with A€ N,m>1and a,...,a, € (ZUN)

e S € N is a distinguished nonterminal symbol repre-
senting the set of syntactically well-formed sentences
in the language, and colloquially referred as a start
symbol (although S more appropriately stands for
“sentence” [15]) or as an initial symbol.

For every rule 7 each string «; is called a conjunct,
and if a grammar has a unique conjunct in every rule, it is
an ordinary context-free grammar. A collection of rules for
a single nonterminal can be written using the shorthand
notation

A%al,l&...&oq,m | \an71&...&an7mn,

in which the vertical lines are, in essence, the disjunction.

Informally, a rule states that if a string is repre-
sentable as each concatenation «;, then it has the prop-
erty A. This understanding can be formalized in three
equivalent ways.

The first definition is by rewriting. The rewriting in
conjunctive grammars is carried out generally in the same
way as in the ordinary context-free case. The only differ-
ence is in the objects being transformed: while context-free
rewriting operates with strings over ¥ UN, which are terms
over concatenation, rewriting in conjunctive grammars use

terms over concatenation and conjunction. Such a defini-
tion was first given in an unpublished Master’s thesis by
Szabari [133], which, unfortunately, was not noticed in its
time.

Definition 1 (Szabari [133], Okhotin [83]). Given a
grammar G, consider terms over concatenation and con-
junction with symbols from ¥ U N and the empty string
as atomic terms. Assume that the symbols “(”, “&” and
97 used to construct the terms are not in X U N. The

relation => of one-step rewriting on the set of terms is
defined as follows:

e Using a rule A — a1 &...&any, € R, any atomic
subterm A of any term can be rewritten by the sub-
term (a1 & ... & Q)

LALL = (& &am) -

o A conjunction of several identical strings in X* can
be rewritten by one such string: for every w € X*,

(w& . &w) . = w.

The relations of rewriting in zero or more steps, in one
or more steps and in exactly ¢ steps are denoted by =—*,
=71 and =*, respectively. The language generated by a
term is the set of all strings over ¥ obtained from it in
a finite number of rewriting steps:

La(p) = {w|w e T, p=5%w).

The language generated by the grammar is the language
generated by the term S':

L(G) = La(S) = {w | w € T*, §=S+w).

For simplicity, when a single-conjunct rule A — « is
applied, one can omit the parentheses, and rewrite A with
«a, rather than with («).

The next definition is given by a formal deduction sys-
tem, which represents the logical content of conjunctive
grammars directly.

Definition 2 (Okhotin [95]). For a conjunctive gram-
mar G = (3,N,R,S), let {X(w)| X € ZUN, w € ¥*}
be the set of elementary propositions (items), each repre-
senting a statement of the form “a string w has a property
X7, The deduction system uses the following axioms:

Fa(a) (forallacX).

E’UBT’y rule A — X171 Ce Xlll &. .. &XmJ .. .Xm’gm €ER
in the grammar, withm > 1, ¢; 2 0 and X; ; € YUN, acts
as a schema for deduction rules: for all strings u; ; € X~
with 1 <1 <m and 1 < j < 4, that satisfy ui1...u1 e =
e =Um - Une, = W,

Xl,l(um), e ,Xm’gm (um}gm) [A(w)

Whenever an item X(w) can be deduced from the above
axioms by the given deduction rules, this is denoted by
GF X(w). Define Lg(X) ={w|GF X(w)} and L(G) =
La(S) = {w |G+ S(w)}.

Another equivalent definition of the language gener-
ated by a conjunctive grammar is by a solution of a sys-
tem of equations with languages as unknowns. Such a
definition for ordinary context-free grammars, given by
Ginsburg and Rice [30], is well-known: a grammar is tran-
scribed as a system of equations

A: U Xl Cee. 'X(
A—Xq..XER

(for all A € N),

where nonterminal symbols A € N are unknown lan-
guages, each symbol of the alphabet X = a € ¥ repre-
sents a constant language {a}, an empty concatenation
with £ = 0 is a constant language {¢}, and multiple rules
for a single nonterminal are represented by union. Every
such system has solutions, among them the least solution
with respect to componentwise inclusion, and this solution
consists of exactly the languages generated by the nonter-
minals of the grammar by rewriting [30].

This definition is directly extended to conjunctive
grammars, with the conjunction in a rule represented by
intersection. The resulting system is bound to have a least
solution by the same basic lattice-theoretic argument as
in the ordinary case with disjunction only, which is based
only on the fact that the right-hand sides of the equations
are monotone and continuous functions (a property shared
by the intersection operation).

Definition 3 (Okhotin [87]). For every conjunctive
grammar G = (X,N,R,S), the associated system of
language equations is a system of equations in variables
N, with each variable representing an unknown language
over X. The system contains the following equation for
every variable A € N.

A= U ()i (2)

A—al &... & am€ER =1

Fach «; in the equation is a concatenation of variables
and constant languages {a} representing symbols of the
alphabet, or constant {} if a; is the empty string. Let
(...yLa,...)aen be the least solution of this system. Then
Lg(A) is defined as La for each A € N, and L(G) = Lg.

This least solution can be obtained as a limit of an
ascending sequence of vectors of languages, with the first
element | = (,...,9), and with every next element ob-
tained by applying the right-hand sides of the system
as a vector function ¢ : (22*) INI — (22*) Nl to the previ-
ous element. Since this function is monotone with respect
to the partial ordering C of componentwise inclusion, the

resulting sequence {¢©*(1)}x_s00 is ascending, and the con-
tinuity of ¢ implies that its limit (least upper bound)

L] #* (L) (3)

k>0

is the least solution. This is the same argument as used
for ordinary context-free grammars [30].

Definitions (1| (term rewriting), [2| (deduction) and
(equations) can be proved equivalent [87, 05], and the
statement of their equivalence reads as follows:

Theorem 1. Let G = (X, N, R, S) be a conjunctive gram-
mar. For every A € N and w € X*, the following state-
ments are equivalent:

o A="w,
o F A(w),
e w is in the A-component of | |~ or(L).

A seemingly similar idea of extending Chomsky’s
context-free string rewriting with alternation (that is, al-
ternation of existential and universal nondeterminism) was
investigated by Moriya [8I] and by Ibarra, Jiang and
Wang [46]. This turned out to be a strange but very power-
ful model of computation, capable of representing at least
all languages in DTIME(29(™), and quite unrelated to the
task of defining the syntax. The difference between the
implementation of conjunction in conjunctive grammars
and the concept of alternation in the computation theory
is that the latter applies logical conjunction to results of
several computations, which need not operate on the same
data, while conjunction in conjunctive grammars applies
to multiple parses of the same substring. Aizikowitz and
Kaminski [2] regarded this property as “synchronized al-
ternation”, and investigated it in the context of pushdown
automata. A similar restriction on alternation was em-
ployed by Lange [60] in a model similar to a conjunctive
grammar used for infinite strings.

2.2. FExamples

Conjunctive grammars can obviously express every-
thing that ordinary context-free grammars can. The new
expressive means allowed by the conjunction operation will
be illustrated by four representative examples.

The simplest use of conjunction is to represent intersec-
tion of separately defined ordinary context-free languages.
This is what is done in the following first example, which
is given mainly to illustrate the definitions.

Example 1. The following conjunctive grammar gener-
ates the language {a™b"c™ | n > 0}:

S — AB&DC
A — dd]e
B — bBcle
C — cCle
D — aDb|e

The grammar is based upon the representation of this lan-
guage as an intersection of two ordinary context-free lan-
guages:

{a'V/cF | j =k} {ab " |i =4} = {a"b"c" | n > 0}.

L(AB)

L(DC) L(S)

According to the definition by term rewriting, the
string abc can be obtained by the following transforma-
tion.

S = (AB& DC) = (aAB& DC) = (aB& DC) =
(abBc& DC) = (abc & DC) = (abc & aDbC) =
(abc & abC) = (abc & abcC) = (abe & abc) = abc

In essence, here two context-free rewritings are carried out
independently of each other, and both AB and DC have
to be rewritten to the same string, in order to perform the
last step of the rewriting.

Turning to the definition by deduction, consider the
following logical derivation of the fact that abc is in L(G):

Fa(a) (axiom)
Fb(b) (axiom)
Fe(e) (axiom)
F A(e) (A—¢)
a(a), A(e) + A(a) (A= ad)
F B(e) (B—¢)
b(b), B(e),c(c) - B(be) (B — bBc)
F D(e) (D —e¢)
a(a), D(g),b(b) F D(ab) (D — aDb)
FC(e) (C—=e)
c(c),C(e) F C(e) (C = cC)
A(a), B(be), D(ab),C(c) F S(abe) (S — AB& DC)

According to the definition by language equations, the
system corresponding to this grammar is

= ABNDC

= {a}A U {¢}

= {b}B{c} U {e}
{c}C U {e}

= {a}D{b} U {},

and this system has a unique solution with S =
{a"b"c" |n >0}, A=a* B={b"c™|m >0}, C=c*
and D = {a™b™ | m > 0}.

An important property of conjunctive grammars is that
the parse of a string according to a grammar can be rep-
resented in the form of a tree with shared leaves, which
generalizes ordinary context-free parse trees. The parse
tree of the string abc with respect to the above grammar
is given in Figure |1} and one can clearly see how it com-
bines two interpretations of the same string according to
the two conjuncts in the rule for S. This tree is essentially

Qe n
|

a proof tree corresponding to the deduction of the item
S(w). A formal definition of parse trees can be found in
the literature [83, [103].

S—AB&DC

A—aA ¥ B—bBc D—aDb ¥y C—cC
[] [}
A—e C—e
Y
[[L]
a b c

Figure 1: Parse tree of the string abc according to the conjunctive
grammar for {a"b"c™ | n > 0} given in Example

The second example illustrates the extended possibili-
ties for induction in conjunctive grammars. Consider an-
other typical language that has no ordinary context-free
grammar: {wcw | w € {a,b}*}. This language represents
such syntactic constructs as identifier checking in program-
ming languages. As proved by Wotschke [141], it is not
expressible as a finite intersection of ordinary context-free
languages. Constructing a conjunctive grammar for this
language thus requires more than putting a conjunction
on top of an ordinary context-free grammar.

Example 2 (Okhotin [83]). The following conjunctive
grammar generates the language {wcw | w € {a,b}*}:

S = C&D

C — aCalaCb|bCa |bCY | c
D — aA&aD | bB&bHD | cE

A — aAa | aAb | bAa | bAb | cEa
B — aBa|aBb|bBa | bBb | cEb
E — aE|bE|¢

The symbol C defines the language {zcy | z,y €
{a,b}*;]z| = |y|} in the standard way, and thus the con-
junction with C' in the rule for S ensures that the string
consists of two parts of equal length separated by a center
marker. The other conjunct D checks that the symbols
in corresponding positions are the same. The actual lan-
guage generated by D is L(D) = {uczu | u,z € {a,b}*},
and it is defined inductively as follows: a string is in L(D)
if and only if

e cither it is in ¢{a,b}* (the base case: no symbols to
compare),

e or its first symbol is the same as the corresponding
symbol on the other side, and the string without
its first symbol is in L(D) (that is, the rest of the
symbols in the left part correctly correspond to the
symbols in the right part).

The comparison of a single symbol to the correspond-
ing symbol on the right is done by the nonterminals A
and B, which generate the languages {xcvay | x,v,y €
{a, b}, |z[= [y|} and {zcvby |z, v,y € {a,b}", |z| = |y},
respectively, and the above inductive definition is directly
expressed in the rules for D, which recursively refer to D
in order to apply the same rule to the rest of the string.
Finally, the rule for S defines the set of strings of the form
xey with |z| = |y| (ensured by C) and x = y (imposed by
D), and

{zey|z,y € {a,b}", |z| = |y|} N{uczu|u, z € {a,b}"} =
= {wecw | w € {a,b}"}.

It is important to note that the construction essentially
uses the center marker, and therefore this method cannot
be applied to constructing a conjunctive grammar for the
language {ww | w € {a,b}*}. The question of whether
{ww | w € {a,b}*} can be generated by any conjunctive
grammar remains an open problem.

The grammar in the third example defines the require-
ment of declaration before use.

Example 3. The following grammar generates the lan-
guage {uy ...u, | n =0, and for every i, either u; € da*,
or u; = ca® and u; = da® for some j < i and k > 0}.

S — SdA|ScA&EdB | e
A — aAle

B — aBa| Ec

E — CcAE|dAFE |«

A substring of the form da® represents a declaration of k,
and every substring of the form ca® is a reference to k,
which requires an earlier declaration da®.

The grammar applies generally the same technique of
inductive definitions as in Example 2] The rule S — ¢
asserts that an empty sequence of declarations and refer-
ences has the required property. The rule S — SdA ap-
pends a new declaration (dA) to a well-formed string with
all references preceded by declarations (S). The other rule
S — ScA & EdB similarly appends a reference (cA), and
at the same time ensures that this new reference has a
preceding declaration (EdB). Here E defines an arbitrary
sequence of declarations and references, and the concate-
nation EdB defines a suitable partition of the string, where
the symbol d begins the appropriate declaration, and B
ensures that the number of symbols a is the same in the
declaration and in the reference.

The grammars in Examples |2| and |3| can be easily com-
bined to represent declaration before use with identifiers

over a two-symbol alphabet. More constructs from pro-
gramming languages are representable using these meth-
ods, and a full grammar for a model programming lan-
guage can be found in the literature [96].

The fourth example shows that conjunctive grammars
over a one-symbol alphabet have a non-trivial expressive
power, unlike the ordinary context-free grammars, which
are limited to regular unary languages [30]. Though this
does not exactly pertain to defining syntax, the demon-
strated technique for constructing conjunctive grammars
for unary languages has numerous theoretical implications
explained later in Section [7.1

Example 4 (Jez [49)]). The following conjunctive gram-
mar with the initial symbol A, generates the language
{a*" |n >0}:

A1 — AIAS&AQAQ ‘ a
A2 — AlAl&AgAG ‘ aa
A3 — A1A2&A6A6 ‘ aaa
Ag — A1Ar & AzAs

Each nonterminal A; generates the language {a**" |n > 0}.

This grammar is best explained in terms of base-4 no-
tation of the length of the strings. Then each nonterminal
A; with 7 € {1, 2,3} represents base-4 numbers ¢0...0, or
120...0 for Ag. Substituting these four languages into the
equation

A1 = (AlAg N AQAQ) U {a},

the first concatenation A;As produces all numbers with
the notation 10*30*, 30*10* and 10T, of which the latter
is the intended set, while the rest are regarded as garbage.
The second concatenation AsAs yields 20*20* and 107,
Though both concatenations contain some garbage, the
garbage in the concatenations is disjoint, and is accord-
ingly filtered out by the intersection, which produces ex-
actly the numbers with the notation 10T, that is, the lan-
guage {a*" | n > 1}. Finally, the union with {a} yields
the language {a*" | n > 0}, and thus the first equation
turns into an equality. The rest of the equations are veri-
fied similarly. Since the membership of each string in the
languages L(A;) depends on the membership of strictly
shorter strings, the grammar defines the correct languages
by a proper induction.

Constructing conjunctive grammars for the following
languages is left as an exercise to the reader:

o {a™b"c™d"™ | m,n > 0};

o {w|w € {a,b,c}*, |wl, = |wlp = |w|.}, where |w],
stands for the number of occurrences of a symbol s

in w;
° {(wc)'wl |w e {a,b}*};
o {da**...da" | n,ki,...,k, > 0, and the numbers

k1,...,k, are pairwise distinct}, which adopts the
encoding from Example [3| and represents the condi-
tion of having no duplicate declarations;

e {a® |n>0}.

This can be done by applying the methods presented in
Examples [TH4]

Another technique for constructing conjunctive gram-
mars is illustrated in the following example:

Example 5 (Okhotin, Reitwiefiner [110]). The
following conjunctive grammar generates the set of
palindromes of odd length over {a,b}:

S—AB&O |al|b
A—aSale

B —bSb|¢e
O—000 |a|b

This language would normally be represented by an
ordinary context-free grammar with the rules S — aSa |
bSb | a | b, which essentially uses two rules involving
nonterminals—that is, a disjunction of two non-constant
terms. On the contrary, the above conjunctive grammar
uses disjunction only with constant terms. The construc-
tion is based on the fact that all strings with the property
S are of odd length. The nonterminal O to generates all
strings of odd length, and then the rule S — AB & O sim-
ulates the disjunction of aSa and bSb as follows:

(aSaU{e})(bSbU{e})NOdd =
= (aSabSbU aSa UbSbU {e}) N Odd = aSa U bSh.

2.8. Normal forms

A few normal forms for conjunctive grammars are
known. The first of them is a direct generalization of the
Chomsky normal form of context-free grammars, in which
every rule is either of the form A — BC with B,C € N,
or of the form A — a with a € %, with a possible rule
S — ¢ for the initial symbol.

Theorem 2 (Okhotin [83]). Every conjunctive gram-
mar can be effectively transformed to a conjunctive gram-
mar generating the same language, which is in the binary
normal form, that is, with every rule of the form

A—=a

(m}l, Bi,CiEN)
(a € X)
S — e,

where the last rule is allowed only if S does not appear in
the right-hand sides of any rules.

The known transformation proceeds by first eliminating
epsilon conjuncts, that is, rules of the form A — §& ...
that can potentially generate the empty string. At the
second step, unit conjuncts, that is, rules of the form
A — B ... that potentially cause circularities in the def-
inition, are eliminated. Elimination of epsilon conjuncts
can be achieved with only a linear blowup in the size of

the grammar, but the known procedure for eliminating
unit conjuncts leads, in the worst case, to an exponential
blowup.

The other normal form theorem reflects on the use of
Boolean operations in a conjunctive grammar. It turns out
that it is sufficient to apply disjunction in the following
restricted form:

Theorem 3 (Okhotin, ReitwieBner [110]). For every
conjunctive grammar there exists and can be effectively
constructed a conjunctive grammar generating the same

language, in which the set of rules for every nonterminal
A is of the form

A—- a1 & &y | wr | ... | wg,
wherem >1, k>0, a; € (XUN)* and wj € &*.

That is, it is sufficient to have right-hand sides of the
rules for every nonterminal form a logical expression, in
which disjunction is always a disjunction with a singleton
constant {w; }, and disjunction of two arbitrary expressions
(represented by two rules of an unrestricted form) is not
allowed.

The construction elaborates on the ideas of Example
first ensuring that all nonterminals (except, maybe, the
initial symbol) generate only strings of odd length. The
latter intermediate form is of interest on its own.

Theorem 4 (Okhotin, ReitwieBner [110]). For every
conjunctive grammar there exists and can be effectively
constructed a conjunctive grammar G = (X, N, R, S) gen-
erating the same language, which is in odd normal form,
that is, with all rules of the form

A— Blalcl &... & Bm,amcm

A—a (a€eX)

If S is never used in the right-hand sides of any rules, then
the following two types of rules are also allowed:

S — aA
S —e

(aeX, AeN)

For ordinary context-free grammars, there is another
important normal form: the Greibach normal form [34],
in which every rule is either A — aa with @ € ¥ and « €
(XUN)*, or A — e. This definition naturally carries on to
conjunctive grammars. It can be said that a conjunctive
grammar G = (X, N, R, S) is in Greibach normal form if
every rule in R is of the form

A—aa1 & ... &aay,
A—e.

n>1,a€X, a; € N*) or

A transformation to this form is known only for the spe-
cial case of a one-symbol alphabet. It can be inferred from
Theorem [4] by first transforming a grammar to the odd
normal form, and then using the commutativity of con-
catenation of unary languages.

(m} 1, B;,C; € N, qa; EE)

Corollary 4.1. For every conjunctive grammar over an
alphabet ¥ = {a}, there exists and can be effectively con-
structed a conjunctive grammar in the Greibach normal
form generating the same language.

It remains unknown, whether every conjunctive gram-
mar over an unrestricted alphabet can be transformed to
that form (see Problem [5|in Section [9.1)).

3. Boolean grammars

3.1. Intuitive definition

Boolean grammars are context-free grammars
equipped with all propositional connectives, or, in
other words, conjunctive grammars augmented with
negation. Conversely, conjunctive grammars are the
monotone fragment of Boolean grammars.

A Boolean grammar is a quadruple G = (X, N, R, S),
in which

e Y is the alphabet;

N is the set of nonterminal symbols;

R is a finite set of rules of the form

A= o1& ... &am &P & ... & Pn (4)

with A € N, myn >2 0, m+n > 1 and «a;,8; €
(BUN)

e S € N is the initial symbol.

The only difference from a conjunctive grammar is that
some conjuncts can be negated: the conjuncts a; and —f3;
are called positive and negative respectively, with the nota-
tion +o; and +8; occasionally used to refer to conjuncts,
without specifying whether they are positive or negative.
A rule can be read as follows: “if a string is repre-
sentable in the form aq, ..., am, but is not representable
in the form By, ..., Bn, then this string has the property
A”. This intuitive interpretation is not yet a formal def-
inition, but this understanding is sufficient to construct
grammars.

Example 6 (cf. Example . The following Boolean
grammar generates the language {a™b"c"™ | m,n > 0,m #

S — AB&-DC
A — dA]e
B — bBc|e
C — cCle
D — aDb|e

The rules for the nonterminals A, B, C and D are context-
free, so, according to the intuitive semantics, they should
generate the same languages as in Example Then the

propositional connectives in the rule for S specify the fol-
lowing combination of the conditions given by AB and
DC:

{a'V/c* | j =k} n{a'bcF |i =5} =
L(AB) L(DC)
={a'V'c*|j=kandi#j}={amb"" |m#n}.

L(S)

Example 7. The following Boolean grammar generates
the language {ww |w € {a,b}*}:

S — —AB&-BA&C
A —- XAX |a

B — XBX|b

C — XXC|e

X — alb

Again, according to the intuitive semantics, the nonter-
minals A, B, C and X should generate the appropriate
ordinary context-free languages, and

L(A) = {uav | u,v € {a,b}", |u| = |v|},

L(B) = {ubv | u,v € {a,b}", |u|] = |v|}.

This implies
L(AB) = {uavaby | u,v, 2,y € {a,b}", [u| = |z[,|v| = |y[},

that is, L(AB) contains all strings of even length with
a mismatched a on the left and b on the right (in any
position). Similarly,

L(BA) = {ubvzay | u,v,z,y € {a,b}", |u| = |x], [v] = |y[}

represents the mismatch formed by b on the left and a on
the right. Then the rule for S defines the set of strings of
even length without such mismatches:

L(S) = L(AB)NL(BA)n{aa, ab, ba, bb}* = {ww|w € {a,b}"}.

Though such a common-sense interpretation of
Boolean grammars is clear for “reasonable” grammars, the
use of negation can, in general, lead to logical contradic-
tions, such as in the grammar S — —S. For that rea-
son, giving a mathematically sound formal definition of
Boolean grammars is far from being trivial. To be more
precise, the dependence of items of the form “string w has
property A” becomes non-monotone, where the discovery
of the fact that some item is true may imply that another
item is false. Thus, a correct assignment of truth-values
to items is a solution of a certain infinite system of equa-
tions with Boolean unknowns. More natural and conve-
nient formalizations are given by representing a grammar
as a system of language equations, so that a particular
distinguished solution of this system defines the language
generated by a grammar.

There are two known definitions of Boolean grammars
by equations. One of them uses equations with standard

10

formal languages as unknowns [94], and avoids the result-
ing difficulties by imposing a restriction upon solutions of
those equations. The other definition expands the model
towards languages over three-valued logic [62] and assigns
a meaning to any grammar.

8.2. Definition by language equations

According to the simplest definition, a grammar is rep-
resented by a system of language equations defined anal-
ogously to the conjunctive case, with the negation rep-
resented by complementation. However, the approach
through least solutions, which worked well for conjunctive
grammars, is no longer useful in this case, as illustrated in
the following example.

Indeed, all solutions of the associated system of equations
are of the form S = L, A = L, and they are pairwise
incomparable.

Thus, in the simplest definition, the system of language
equations is required to have a unique solution, and gram-
mars with no solutions or multiple solutions are considered
ill-formed. However, this does not yet guarantee that the
membership of a string in the language depends only on
the membership of shorter strings, which is essential for
grammars to represent inductive definitions. Consider the
following grammar, along with the associated system of
language equations:

The system has a unique solution S = A = @: indeed, sup-
posing that there is a string w € A, a contradiction of the
form “aw € S if and only if aw ¢ S” is obtained. Thus,
in order to determine that w ¢ A, one has to consider
the string aw, which contradicts the principle of inductive
definition. Furthermore, there is a theoretical result, that
every recursive language is represented by a unique solu-
tion of a system of language equations associated to some
Boolean grammar [104].

However, once an extra restriction is imposed upon
these equations, a feasible definition of Boolean grammars
can be obtained. The following condition of unique solu-
tion modulo ©5¢ essentially means that the properties of
strings of length up to ¢, as they depend upon each other,
are completely resolved without considering any longer
strings and their properties.

A
A

S — —A
A — A

S
A

S — —S&ad
A — A

S
A

S N {a}A
A

Definition 4 (Okhotin [94]). Let G = (X,N,R,S) be
a Boolean grammar, and define the associated system of
language equations

A:

m
ﬂai N

i=1

U

A—a &...& am &
& P11 & & BrER

D 5o

Assume that for every integer £ > 0 there exists a unique
vector of languages (..., La,...)acn with Ly C XS, such
that a substitution of Lo for A, for each A € N, turns ev-
ery equation @ into an equality modulo intersection with
YSE Then the system is said to have a strongly unique
solution, and, for every A € N, the language Lg(A) is
defined as L o from the unique solution of this system. The
language generated by the grammar is L(G) = Lg(5).

Returning to the above grammar with the rules S —
=S & aA and A — A, consider any number ¢ > 0. Then
the associated system has two solutions modulo 2S¢,
namely, (S = 9,4 = @) and (S = @, A = {a’}). There-
fore, the grammar is deemed invalid according to Defini-
tion [4l

Consider the Boolean grammar in Example []] The
corresponding system of language equations is

S = ABNBANC
A = XAX U{a}
B = XBXU{b}
C = XXCu{e}
X = {apu{d}

and the following assignment of languages to variables is
its unique solution:

S ={ww|w € {a,b}"},

A = {uav | u,v € {a,b}", Ju| = |v|},
B = {ubv | u,v € {a,b}", |u| = |v|},
C = {aa, ab, ba, bb}",

X = {a,b}.

Furthermore, its solution modulo every $S¢ with £ > 0
is unique, and hence L(G) is well-defined as {ww |w €
{a,b}"}.

There is a normal form for Boolean grammars, which
further generalizes the binary normal form for conjunctive
grammars from Theorem

Theorem 5 (Okhotin [94]). For every Boolean gram-
mar as in Definition [there exists and can be effectively
constructed a Boolean grammar generating the same lan-
guage, which is in the binary normal form, with all
rules of the form

A—)Blcl&&BmCm&_'DlEl&&_\DnEn&_\S
(m} 1, ’I’L}O, Bi,Oi,D]’,Ej GN)
A—a (a€eX)

S —e¢

The rule of the last type is allowed only if S does not appear
in the right-hand sides of any rules.

Every grammar in the binary normal form satisfies
Definition [}

Definition [4] has its limitations. First, some grammars
with a clear meaning do not meet its condition. The sim-
plest such grammar is S — S, where the corresponding
language equation S = S has multiple solutions, with the
least solution S = @. Even though any conjunctive gram-
mar can be transformed, so that the system of equations
has a strongly unique solution (due to Theorems [2| and ,
this restriction is still rather inconvenient.

Another complication surrounding Definition [] is that
it is undecidable whether a given Boolean grammar satis-
fies this definition [94, Thm. 2]. The construction in The-
orem [5| is effective in the following sense: there exists an
algorithm, which, given an arbitrary Boolean grammar G,
not necessarily satisfying Definition [d] constructs another
grammar G’ in the binary normal form. If the grammar G
satisfies Definition [4] then L(G’) = L(G). But if the orig-
inal grammar does not meet the condition in Definition []
and L(G) is thus undefined, then the algorithm may not
detect this, and will still return some grammar G’.

One more problem is that there exist some extremal ex-
amples of grammars that have no intuitive meaning, but
which comply to Definition [4] and are deemed to generate
some strange languages. Examples of the latter kind were
given by Kountouriotis et al. [62], who accordingly pro-
posed a more advanced definition of Boolean grammars
given below.

8.8. Definition by a well-founded fixpoint

Another definition of Boolean grammars, inspired by
the well-founded semantics in logic programming, was
given by Kountouriotis et al. [62]. According to this def-
inition, a Boolean grammar is interpreted as a system of
equations with unknown three-valued languages, and this
system is guaranteed to have a certain kind of fixpoint,
which is used to assign meaning to the grammar.

Three valued languages are mappings from X* to
{0,1,1}, where 1 and 0 indicate that a strlng definitely
is or definitely is not in the language, while 2 5 stands for
“undefined”. Equivalently, three-valued languages can be
denoted by pairs (L, L") with L C L' C ¥*, where L and
L’ represent a lower bound and an upper bound on a lan-
guage that is not known precisely. A string in both L and
L' definitely is in the language, a string belonging to nei-
ther of them definitely is not, and if a string is in L’ but not
in L, then its membership is not defined. In particular, if
L = L/, then the language is completely defined, whereas
a pair (&, X*) means a language about which nothing is
known. The set of such pairs shall be denoted by 3> .

Boolean operations and concatenation are generalized
from two-valued to three-valued languages as follows:

=(KUL, K'UL'),
(KNL, K'nL",
(L.1) = (T,),
(K,K')(L,L') = (KL,K'L').

(K,K'YU (L, L'
(K,K'Yn (L,L'

)

Two different partial orderings on three-valued lan-
guages are defined. First, they can be compared with
respect to the degree of truth:

(K,K'YCr(L,L') if KCLand K'CL'.
This means that whenever a string belongs to the lesser
language, it must be in the greater language as well, and
if the membership of a string in the lesser language is un-
certain, then it must be either uncertain or true for the
greater language.

The other ordering is with respect to the degree of in-
formation:

(K,K'YC,(L,L') if KCLand L' CK'"

It represents the fact that (K, K’) and (L, L’) are approx-
imations of the same language, and that (L, L’) is more
precise, in the sense of having fewer uncertain strings. If
a string is definitely known to belong or not to belong to
the lesser language, then it must maintain the same status
in the greater language, and if a string is uncertain in the
lesser language, then the greater language may have any
value of this string, that is, keep it as uncertain or define
it as a member or a non-member.

Both orderings are extended to vectors of three-
valued languages. The truth-ordering has a least el-
ement Ly = ((2,9),...,(2,9)), that is, every lan-
guage is completely defined as @; the greatest element
is ((Z*, ¥, (B E*)). For the information-ordering,
the least element is 1 = ((@,Z*), oo (9, Z*)), in which
all languages are fully undefined. Fully defined languages
are pairwise incomparable maximal elements of C;.

Now every Boolean grammar is represented by the sys-
tem of equations

A= U
A—al1 &... & am &
& P1 & & _‘57,,,/ €ER

Léai n éﬂ]} (6)

in which the unknowns A € N are three-valued languages,
each symbol a € ¥* represents a completely defined con-
stant language ({a},{a}), and empty concatenations rep-
resent constants ({e},{e}). The task is to show that this
system always has solutions in three-valued languages, and
to construct a particular solution used to define the lan-
guage generated by the grammar.

As in the two-valued case, concatenation, union and in-
tersection, as well as every combination thereof, are mono-
tone and continuous with respect to the truth ordering;
complementation is not monotone. With respect to the
information ordering, concatenation and all Boolean op-
erations, including complementation, are monotone and
continuous, which extends to any combinations of these
operations.

These properties allow the following two-level fixpoint
iteration. In the beginning, nothing is known about the

12

membership of any strings, which is represented by a vec-
tor of languages K(® = 1 ;. Then, this knowledge is sub-
stituted into all negative conjuncts in the right-hand sides
of @, turning each equation into

U [ﬁa N const},

A—ar1 &... & am & =1
& P11 & & =B, ER

A:

where the constant depends upon K and all B;. The
resulting system has no negation, and therefore its least
solution with respect to the truth-ordering C1 can be ob-
tained by a fixpoint iteration. Then, the vector of three-
valued languages in the limit is denoted by K1), with
KO, kO,

Repeating the same process leads to an infinite se-
quence {K®},5, which is monotone with respect to the
information-ordering C;. The properties of this ordering
can then be used to show that the limit of this sequence
is a solution of the system @ This solution defines the
meaning of the original grammar.

Definition 5 (Kountouriotis et al. [62]). Let G =
(X,N, R, S) be a Boolean grammar, let N = {A1,..., A, }.
Fiz any vector of three-valued languages K = (K1, K1),
.y (Kn,KY)) € (3%)™ and define a function O
(3%)" — (3%7)™ by substituting its argument into posi-
tive conjuncts and K into negative conjuncts:

U

Ao &... & am &
& P11 &... & B ER

[Or(L)]a =

for each A € N. Furthermore, let

QK) = |1) 0% (Lr),

>0

and let
M= 1] (L),
k>0

where the least upper bounds are with respect to the truth-
ordering T and the information-ordering Cj, respec-
tively. Then, define Lg(A) = [M]a.

This definition by a two-level fixpoint iteration is effec-
tive in the same sense as the one-level fixpoint iteration
used for conjunctive grammars. For a conjunctive gram-
mar, if a string w is in Lg(A), then it appears at some
k-th step as the A-component of ©*(L), and this number
k is the height of the proof that w has the property A. In
the case of the well-founded semantics, whenever a string w
has a certain value in M, this value is assigned at some k-th
step of the I-iteration Q% (L), where it emerges from some
¢-th step of the T-iteration ©% (L7) with K = QF=1(L;).
The pair of numbers (k,¢) represents the decision point
for the string w, and can be used in proofs by induction
similar to the simple conjunctive case.

Consider the following basic example of a Boolean
grammar that is clearly ill-formed in terms of two-valued
languages. In three-valued languages, this grammar gen-
erates a language undefined on every string:

Example 8. The Boolean grammar S — —S generates
the three-valued language (&, %*).

The second example illustrates how a well-founded fix-
point generalizes the standard least fixpoint used in the
definition of conjunctive grammars, and specifies a single
appropriate solution among infinitely many solutions of a
system of equations.

Example 9. According to Definition [3, the following
Boolean grammar

S — —-A
A — A

has Lg(S) = (X*,2*) and La(A) = (2, 2).

The grammars in Examples [§ and [J] do not satisfy the
condition in the simpler Definition[d because each of them
has multiple solutions in two-valued languages. The next
example presents a grammar that complies to Definition [4]
but generates a counter-intuitive language according to it,
while according to the well-founded semantics, the gram-
mar generates a fully uncertain language.

Example 10 (Kountouriotis et al. [62]). The
Boolean grammar

S — —=S&A
A — A

generates the three-valued language L(G) = (&,%*) ac-
cording to Definition |9, with Lg(A) (@,2). On the
other hand, Deﬁnition inexplicably assigns Lg(S) = @
and Lg(A) = ¥*.

Finally, note that if a grammar generates a fully defined
language L(G) = (L, L) according to Definition [5| and at
the same time has a strongly unique solution in two-valued
languages, as in Definition [then this strongly unique
solution defines L(G) = L. This stems from the fact that
three-valued operations on languages preserve two-valued
languages, and hence every solution of the system of two-
valued equations associated to a grammar is a solution
of the system of three-valued equations @

The binary normal form for conjunctive grammars and
for the simpler definition of Boolean grammars has a vari-
ant for the well-founded definition.

Theorem 6 (Kountouriotis et al. [62]). Every
Boolean grammar, as in Definition [, can be effec-
tively transformed to a grammar in the binary normal

13

form, in which every rule is of the form

A= BiC1& ... & BmnCrm & ~D1E1 & ... & ~ Dy B & €
(m>1,m'>0, B;,C;,Dj, E; € N)

A—a (a€el)
A—=a&-A (ael)
S—e

Here a rule A — a & A generates an uncertain single sym-
bol, (@,{a}), while the rule S — ¢ is allowed only if S
does not appear in the right-hand sides of any rules.

The transformation maintains the three-valued lan-
guage generated by the grammar.

Some recent contributions to the three-valued theory of
Boolean grammars include an equivalent characterization
of Definition [5| by an infinite combinatorial game, due to
Kountouriotis et al. [63], as well as a simpler variant of
Definition [5| for a subclass of Boolean grammars, proposed
by Nomikos and Rondogiannis [82].

A variant of the three-valued definition of Boolean
grammars, in which languages are generalized to mappings
from ¥* to any Boolean algebra B, was introduced by Esik
and Kuich [24]. Under their definition, partially known
mappings are approximated by pairs of such mappings,
in the same way as in the case of B = {0,1} studied by
Kountouriotis et al. [62]. Though Esik and Kuich [24] use
only the information ordering and consider only a single
fixpoint iteration with respect to this ordering, their defi-
nition can apparently be extended to a combination of two
orderings, as in Definition

3.4. Parse trees and ambiguity

An important property of Boolean grammars inherited
from the ordinary context-free grammars is the presenta-
tion of the syntax of a generated string in the form of
a parse tree. Parse trees for conjunctive grammars were
already mentioned in Example [I} and such a tree tran-
scribes a complete proof that a string is generated by the
grammar. In the case of a Boolean grammar, the known
definition of a parse tree does not account for negative
conjuncts, and represents a parse of a string according to
positive conjuncts in the rules.

These are, strictly speaking, finite directed acyclic
graphs rather than trees. A parse tree of a string w
ai ...aj,| from a nonterminal A has |w| ordered leaves la-
belled with a1, ..., aj,|, and the rest of the vertices are
labelled with rules from R. The subtree accessible from
any given vertex of the tree contains leaves in the range
between ¢ + 1 and j, and thus corresponds to a substring
@iy1 ... a;. Bach vertex labelled with a rule

A—-a&.. . &an&b1&...&06n

and associated to a substring a;41 ... a; has direct descen-
dants corresponding to the symbols in positive conjuncts,
labelled according to these symbols. Negative conjuncts

are not represented in the tree. For example, if the con-
junctive grammar from Example [I] had the rule for S re-
placed with S — AB § DC & —AA, then the parse tree of
the string abc would still have the same form as in Fig-
ure [For each substring of w and for each A € N, it is
sufficient to have at most one subtree representing a parse
of w from A, and hence the entire tree needs to have at
most |N| - 1|w|(jw| + 1) + |w| nodes. A mathematically
precise definition of a parse tree for a Boolean grammar
can be found in the literature [103].

Ambiguity in ordinary context-free grammars can be
defined in two ways. A grammar can be deemed unam-
biguous,

e if for every string generated by the grammar there is
a unique parse tree (in other words, a unique leftmost
derivation);

or if for every nonterminal A and for every string
w € L(A) there exists a unique rule A — s1...5¢
with w € L(s1...s¢), and a unique partition w
uy ... up with u; € L(s;).

Assuming that L(A) # @ for every nonterminal A, these
definitions are equivalent. In the case of Boolean gram-
mars, the first definition becomes useless, because nega-
tive conjuncts are not accounted for in a parse tree, and
the requirement of parse tree uniqueness can be trivially
satisfied by employing double negation on top of a gram-
mar [103].

A sound definition of an unambiguous Boolean gram-
mar follows the second approach, and takes into account
partitions of strings according to both positive and nega-
tive conjuncts.

Definition 6 (Okhotin [103]). A Boolean grammar
G = (X,N,R,S) is unambiguous, if

1. the choice of a rule for every single nonterminal A
18 unambiguous, in the sense that for every string w,
there exists at most one rule

A—>al&...&am&—\,31&-.-&_'/3m

withw € Lg(a1)N. . .NLg(am)NLa(B1)N...NLa(Bn)
(in other words, different rules generate disjoint lan-
guages), and

all concatenations are unambiguous, that is, for every
conjunct +sq...8p that occurs in the grammar, and
for every string w, there exists at most one partition
w=1uq...up withu; € Lg(s;) for all 1.

II.

A language L can be called inherently ambiguous with
respect to conjunctive (Boolean) grammars, if it is defined
by some conjunctive (Boolean) grammar, but every con-
Junctive (Boolean) grammar generating L is ambiguous.

The unambiguous concatenation requirement applies
to positive and negative conjuncts alike. For a posi-
tive conjunct belonging to some rule, this means that a

14

string that is potentially generated by this rule must be
uniquely split according to this conjunct. For a negative
conjunct ~DE, this condition requests that a partition of
w € Lg(DFE) into Lg(D) - Lg(E) is unique, even though
w is not gemerated by any rule involving this conjunct.
Though the latter condition might appear unnecessary,
it is in fact essential, because one can transform a given
grammar to move all ambiguous concatenations into neg-
ative conjuncts [103].

Though, as mentioned above, the uniqueness of a parse
tree does not guarantee that a grammar is unambigu-
ous, the converse holds. That is, for every unambiguous
Boolean grammar G = (X, N, R, S), for every nonterminal
A € N and for every string w € Lg(A), the parse tree of w
from A is unique (assuming that only vertices labelled with
the symbols of the alphabet may have multiple incoming
arcs).

The ambiguity of the choice of a rule can be effectively
eliminated in a Boolean grammar by supplying every rule
with an additional conjunct that expresses the condition of
non-representability by the rest of the rules for this non-
terminal [I03]. For example, two rules A — a | 8 can
be replaced with the rules A — « | f& —«a. A stronger
statement is given in the following normal form theorem.

Theorem 7 (Okhotin [103]). For every Boolean gram-
mar, as in Definition[]], there exists and can be effectively
constructed a Boolean grammar generating the same lan-
guage, which is in the binary normal form, as defined in
Theorem[5, and in which the choice of a rule is unambigu-
ous. Furthermore, if the original grammar had unambigu-
ous concatenation, then so does the constructed grammar.

For conjunctive grammars, the earlier Theorem [3| due
to Okhotin and ReitwieBner [I10] implies that every con-
junctive grammar can be transformed to a conjunctive
grammar with unambiguous choice of a rule. However, the
transformation introduces ambiguity of concatenation.

Consider some examples. The grammar in Example
is unambiguous, and so is the similar grammar in Exam-
ple[6l The grammar in Example 2] is unambiguous as well.
On the other hand, the grammar in Example [5] is ambigu-
ous, because the concatenations AB and OOO are both
ambiguous: for instance, aaa-babab and aaaba-bab are two
partitions of a single string into L(A)L(B). The grammar
in Example[7]is also ambiguous, because this is basically an
ambiguous ordinary context-free grammar with a negation
on top; it is not known whether this language is generated
by any unambiguous Boolean grammar.

The grammar in Example [4] is definitely ambiguous,
because a concatenation of a language over a one-symbol
alphabet with itself is always ambiguous, as long as this
language has at least two elements. However, there exists
a slightly more complicated grammar generating the same
language using the same general method.

Example 11 (Jez, Okhotin [567]). The following con-
Junctive grammar is unambiguous, and it generates the

language {a*" |n > 0}.

Al — A1A3&A7A9 | a | a*
A2 — A1A7&A2A6 | a?

A3 — AlAQ&AgAg | a®

As = A1Ay & AgAis | a®

A7 — A1A3& AiAg

Ag — A1 AQ & A2A7

A5 = AgAg & A2A7

FEach nonterminal A; generates the language La(A4;) =

{a™*" | n > 0}.

4. Grammars with linear concatenation

A special case of ordinary context-free grammars,
which can express a concatenation of a nonterminal symbol
only with terminal strings, is known as a linear context-
free grammar. In such grammars, every rule A — «
has a € ¥* U X*NX*. These grammars are notable for
their lower computational complexity and other notewor-
thy properties.

Similarly to the case of grammars with disjunction
only, a conjunctive grammar is called linear conjunc-
tive, if every rule it contains is either of the form A —
w1 By & ... &upByv, with n > 1, u;,v; € X* and
B; € N, or of the form A — w with w € ¥*. The grammar
in Example [2|is linear; the grammar in Example [1|is not,
yet it can be straightforwardly changed to make it linear.
The grammar in Example [4] essentially relies on concate-
nating nonterminals to each other, and has no equivalent
linear conjunctive grammar.

4.1. Representation by trellis automata

The family of languages defined by linear conjunctive
and linear Boolean grammars had actually been known for
twenty years before these grammars were introduced. This
is the family defined by one of the simplest types of cellular
automata: the one-way real-time cellular automata, also
known under the proper name of trellis automata, studied
by Dyer [21], Culik, Gruska and Salomaa [19, 20], Ibarra
and Kim [47], and others.

A trellis automaton,

(X,Q,1,6,F), processes string of length
n > 1 using a uniform triangular array of @ processor
nodes, connected as in Figure Each node computes a
value from a fixed finite set). The nodes in the bottom
row obtain their values directly from the input symbols
using a function I : ¥ — @. The rest of the nodes
compute the function § : Q x Q@ — Q of the values in
their predecessors. The string is accepted if and only if
the value computed by the topmost node belongs to the
set of accepting states F' C Q.

Evidently, trellis automata are one of the simplest com-
putational models one can imagine, and they were proved
to be computationally equivalent to linear conjunctive
grammars:

defined
input

as a quintuple
an

15

AN
f@o@o\o

aq a, asz a,

Figure 2: The form of a computation of a trellis automaton.

Theorem 8 (Okhotin [92]). A language L C X7t is
generated by a linear conjunctive grammar if and only if
L is recognized by a trellis automaton.

The theorem is proved by effective constructions in
both directions. Consider a linear conjunctive grammar
G = (X,N,R,S), in which every rule is of the form

(7)
or A — a with a € 3; every linear conjunctive grammar
can be converted to this form [83] by a transformation
similar to the one in Theorem For such a grammar,
there is an equivalent trellis automaton with the set of
states Q = X x 2V x 3, which, given a string w, computes
the triple formed by (i) the first symbol of w, (ii) the set of
nonterminals in N generating w, and (iii) the last symbol
of w. Accordingly, the initial function of this automaton is
defined as I(a) = (a,{A|A — a € R}, a), astate (a, X,) is
set to be accepting if S € X, and the transition from every
pair of states (b, X,¢’) and (V/,Y, ¢) leads to the following
state:

5((b, X,), (V,Y,c)) = (b, {A|there is a rule (7)
with C4,...,C, € X and By,...,B,, €Y}, c).

A direct construction applicable to an arbitrary linear con-
junctive grammar is also known [91].

Conversely, any trellis automaton M = (3,Q,1,6, F)
can be simulated by a linear conjunctive grammar G with
the set of nonterminals N = {4, | ¢ € Q} U {S}, where
L (Ag) is the set of all strings in £%, on which M com-
putes the state g. Every transition ¢ = §(¢1,¢2) is then
represented by the following |3|? rules:

Ay = bAy, & Ag e (forall b,c e X).

There are also the rules A;(,) — a for each a € X, and S —
Aq for all ¢ € F. It is worth noting, that this grammar is
unambiguous, which leads to the following small result.

Corollary 8.1 ([103, Thm. 4]). For every linear con-
junctive grammar, there exists an unambiguous linear con-
Junctive grammar generating the same language.

(b,ce X, B;,C; € N)

The transformation of a trellis automaton to a gram-
mar can be done in a different way, which minimizes the
number of nonterminals, at the expense of having an enor-
mous number of rules. This construction is described in
Theorem 1] in Section

Analogously to linear conjunctive grammars, one can
define a linear Boolean grammar, with all rules of the form
A — tuBivi & ... & tu,B,v, or A — w. However,
linear Boolean grammars can be simulated by trellis au-
tomata [94], and therefore are equivalent in power to linear
conjunctive grammars.

4.2. Ezamples

Trellis automata are occasionally useful for represent-
ing languages, for which no convenient grammar is known.
Consider the Dyck language of balanced brackets, typi-
cally defined by an ordinary context-free grammar S —
aSb | SS | e. Tt is linear conjunctive, because there exists
the following automaton.

Example 12 (Dyer [21, Thm. 3]). The Dyck language
is recognized by a trellis automaton ({a,b},Q,1,0,F),
where

Q = (/NKSL e
I(b):\a X**/‘
S NN
X
AN
£XON
VAN
£ = XN
A A AN
FX = S = XN
AN = N
A R

SN /AN /N N N
a a b a b a a b b b

Figure 3: A sample computation of the trellis automaton for the
Dyck language given in Example

A linear conjunctive grammar for the Dyck language,
obtained from this example by applying the construction
in Theorem [8] can be found in the literature [92, Ex. 2].

The next example illustrates the ability of trellis au-
tomata to count in positional notation.

Example 13 (Ibarra, Kim [47, Ex. 2.1]). The
guage {a™b*" | n > 1} is linear conjunctive.

lan-

On a string a’b’ with 4,7 > 1, a trellis automaton rec-
ognizing this language computes the i-th bit of the base-2

16

representation of j. Some further states are used to repre-
sent the carry digit, and to keep track of whether j is less
than, equal to, or greater than 2°.

The language in the following example had once been
proposed as a candidate language for having no trellis au-
tomaton [47]. Surprisingly, a sophisticated trellis automa-
ton recognizing this language was constructed.

Example 14 (Culik [18]). The
{a™mb™ T a™ | m,n > 1} is linear conjunctive.

language

The construction embeds a cellular automaton solving
the firing squad synchronization problem [8] into a trellis
automaton.

4.3. Limitations

A general method for proving non-representability of
particular languages by trellis automata was discovered
by Terrier [I34]. Tt is based upon a special complexity
function of a language, which reflects the number of cases
that the trellis automaton needs to distinguish in the last
few levels of its computation.

Definition 7. Let L C ¥* be a language, let k > 1 and
let w=ay...an be a string with n > k. Define a set

SL,k,w = {(Z,])Il,j 20,1475 < k‘, Qit1---QAp—j € L},

which represents the membership in L of all substrings of
w longer than |w| — k symbols. Neat, define the set of all
sets St i for all strings w:

Spk={SLhw|weX*, [w| >k}

Let fr(k) = [Spx|-

E(k+1)

2

and accordingly, the cardinality of the set S I,k is between
k(k+1)

1 LNYETis@or Xt) and 27 2
subsets of {(4,4) | 4,7 =0, i+ j < k}).
This measure exposes the following limitation of linear
conjunctive languages: the growth rate of their “complex-
ity” function fr (k) cannot get as high as 20(k*) for the

Each set Sp, k. has between 0 and elements,

(if S .k contains all

reason that the acceptance decisions on all % long sub-
strings of the input are determined by k states of a trellis
automaton computed on k substrings of length |w|—k+1,
and there are only 2°%) combinations of these states.

Theorem 9 (Terrier [134]). If L € X¥* is linear con-
junctive, then there exists a number p, such that

fuk)

Theorem [J] was followed by an example of an ordinary
context-free language that maximizes this complexity mea-
sure, and hence is recognized by no trellis automaton:

<ph.

Example 15 (Terrier [134]). The language

L= {ail bjl . ai'm bj'm

m > 27 itvjt > 13
I iy =jp and igy1 = Jm}
is generated by an ordinary context-free grammar. But it

has fr(k) = 9 5
tive.

, and therefore is not linear conjunc-

The language L in Example is inherently ambigu-
ous [103], that is, every ordinary context-free grammar
generating it must be ambiguous. In plain words, this is
one of the more complicated context-free languages. The-
orem [J] can also be used to show that some simpler lan-
guages are not linear conjunctive.

Example 16 (Okhotin [107]). The language

L={c™a"b...a"1ba*b...a"bd" |

myn,b; 20, z =21, £y, =n}

is generated by an LL(1) context-free grammar. However,
fr(k) = (k+1)! = 20K18k) " and therefore L is not linear
conjunctive.

Some further limitations of linear conjunctive lan-
guages are known for languages of a special form. Every
linear conjunctive language over a one-symbol alphabet
¥ = {a} is regular, because all states on the same hori-
zontal level in Figure |2 are identical. The following two
results show some limitations of trellis automata operating
on strings from a*b*.

Example 17 (Yu [144]). The language {a"b*"|n,i > 1}
is not linear conjunctive.

Theorem 10 (Buchholz, Kutrib [13]). For every
function f: N — N, if the language {a"b’) | n > 1} is
linear conjunctive, then f is bounded by an exponential
function.

Both results are proved by showing that every trellis
automaton operating on strings of this form demonstrates
periodic behaviour of a certain kind.

5. Basic parsing algorithms

Parsing means decomposing a string into substrings
according to a grammar, and verifying that it is a well-
formed sentence. Given a string as an input, a parsing
algorithm should determine whether the string belongs to
the language described by a fixed (or a given) grammar,
and if it does, construct a parse tree of the string, as it is
defined by the grammar.

17

5.1. Cubic-time tabular parsing

The simplest parsing method applicable to all context-
free languages is known as the Cocke-Kasami-Younger al-
gorithm [59, [143]. Though not entirely practical as it is,
due to the normal form requirement, this algorithm is im-
portant as the mathematical germ of other more practi-
cal algorithms, and as an easy proof that every ordinary
context-free language is recognizable in time O(n?).

The Cocke-Kasami-Younger algorithm extends to
Boolean grammars in a completely seemless way. It re-
quires a Boolean grammar in binary normal form; given
an input string w = a; ... a,, the algorithm constructs an
n X n table T of sets of nonterminals, with

Ti,j = {A S N|ai+1...aj c Lg(A)}

for all 0 < 7 < j < n. The elements of this table are
calculated inductively on the length j — i of the substring,
beginning with the elements 7T; ;+1, each depending only
on the symbol a;41, and continuing with larger and larger
substrings, until the element T ,, representing the entire
string is computed. The induction step is given by the
equality

j—1
T;; = f(U Tix x Tk,j)7

k=i+1

where the function f: 2¥V*N — 2N is defined by
A € f(U) if and only if there is a rule A —
BlCl &... & BmCm & ﬂDlEl &... & _\DmlEm/ & —e with
(B:,Ct) € U and (D4, E;) ¢ U for all applicable t. In
total, there are ©(n?) elements, and each of them takes
O(n) operations to compute, which leads to an obvious
cubic-time algorithm [83], [94].

Once the algorithm verifies that the input string is gen-
erated by the grammar, the table T; ; can be used to con-
struct a parse tree of the string [37, Alg. 12.4.3], in time
proportional to |G|-t-n, where ¢ is the number of nodes in
the resulting tree. Thus, the complexity is again asymp-
totically bounded by |G| - n3.

Several variants of this algorithm are known. Firstly,
one can extend its applicability by relaxing the normal
form requirement. To this end, the algorithm is changed
to manipulate conjuncts with marked positions instead of
ordinary nonterminals, and accordingly use more elaborate
operations on sets of such items. For ordinary context-
free grammars, this leads to the well-known algorithms
by Earley [23] and by Graham, Harrison and Ruzzo [33].
The Graham—Harrison—Ruzzo algorithm was extended to
context-free grammars with Boolean operations at the top
level by Heilbrunner and Schmitz [39], and to conjunctive
grammars of the general form by the author [89]. A variant
of this algorithm for Boolean grammars with restricted use
of negation and with weak normal form conditions was
given by Wrona [142].

Another variant of the above algorithm for Boolean
grammars in binary normal form defined by well-founded

fixpoints was devised by Kountouriotis et al. [62]: this al-
gorithm computes the three-valued membership of a given
string in the language.

5.2. Square-time parsing for unambiguous grammars

The basic cubic-time parsing algorithm for Boolean
grammars has another variant, that works in square time
on any unambiguous grammar. This performance increase
is achieved by using a different data structure to represent
the same table T € (2V)"*" with

Ti,j = {A eN | Ajt1...05 € Lg(A)}

The new data structure is a two-dimensional table 71",
indexed by positions in the input and nonterminals. Each
entry of this table holds a set of positions in the input
string, which are stored as a list in an ascending order.
The element corresponding to a position j, with 1 < j < n,
and a nonterminal A € N is denoted by T}[A]. Its intended
value is

:r]/[A] = {Z | [£ 77 R a]' S LG(A)}7

that is, Tj[A] should contain the initial positions of all
substrings generated by A, which end at the k-th position.
Then, accordingly, 7 € Tj[A] if and only if A € T; ;. The
entire string a; ... a, is in L(G) if and only if the position
0 is in T7,[S].

The algorithm processes the input string from left to
right: after reading every next symbol a;, it calculates the
sets T/[A] for all A € N. For each j, this is done along
with determining all concatenations a;11 ... ax ap41 ... a;,
where a;y1...ar € Lg(B) and ag41...a; € Lg(C) for
some positions ¢,k and for some conjunct £BC in the
grammar. These concatenations are then stored in the
variables U; ; € N x N, which are of the same kind as the
argument of the function f in Section [5.1} Based on the
conjuncts accumulated in U; ;, the parser will eventually
decide to insert the element i in the lists T7[A], for any
AeN.

The key idea of the algorithm is the particular way, in
which these sets U; ; are filled. The algorithm performs
lookups of the following form: in search for a conjunct
+BC, first, it traverses the list 77[C] and reads each po-
sition k from this list; secondly, for every such position
k, it traverses the list T} [B] and considers each position
1 in there; and finally, for every such 4, it inserts the pair
(B,C) into U; ;. In this way, if the lists for a particular in-
put string are sparsely populated, then the algorithm will
have to make only as few steps as the number of actual
concatenations, rather than look for concatenations in all
possible places. And if the grammar is unambiguous, one
can prove that there are only O(n?) concatenations in to-
tal, and that the statement in the innermost loop of the
algorithm shall be executed at most O(n?) times.

For ordinary context-free grammars, a similar algo-
rithm was first proposed by Kasami and Torii [60]. The
more well-known algorithm by Earley [23] is also known
to work in square time, if the grammar is unambiguous.

18

However, both algorithms do not use an intermediate data
structure U; ;, and write each concatenation they find di-
rectly to the equivalents of the sets 7. This would not
work already for conjunctive grammars, where the con-
juncts determined at a different time must be brought to-
gether to apply a rule of the grammar. Accordingly, the
algorithm for Boolean grammar has to have a slightly dif-
ferent data flow.

Theorem 11 (Kasami, Torii [60]; Okhotin [103]).
For every Boolean grammar G (X,N,R,S) in bi-
nary normal form, there exists an algorithm, which,
given an input string w = aj...a,, constructs the sets
Ti[A] ={i|0<i <], aiy1...a; € Lg(A)}, forall A€ N
and j € {1,...,n}. The algorithm works in time O(n3).
If the concatenation in the grammar is unambiguous, it
works in time O(n?).

5.3. Generalized LR parsing

The deterministic LR(k) parsing method, introduced
by Knuth [61], is applicable to a subclass of ordinary
context-free grammars. An LR(k) parser reads the string
from left to right, using a stack memory, and its config-
uration is a pair of the stack contents a € (¥ U N)* and
the unread suffix v of the input. When the parser is in
a configuration (a,v), where w = wv is the entire input
string, this means that it has already parsed the earlier
part of the input w, and found its representation as the
concatenation «, with u € Lg (o).

A deterministic LR parser may use two operations: (i)
shifting the next input symbol to the stack, and (ii) re-
ducing a right-hand side of a rule A — 7 at the top of the
stack to a single symbol A:

(o, av) Shift a, (aa,)
(0577,1)) Reduce A — n (OzA,U)

In order to decide, which operation to apply in a configura-
tion, a deterministic LR parser may use the next k symbols
of the input, where k is fixed, and the state computed by
a certain DFA that processes the stack from the bottom
to the top. Many methods for constructing suitable DFAs
are known [I} [6I]. In an implementation, the parser stores
|| intermediate states of this DFA in the stack, instead
of the symbols from «, and simulates only one transition
of the DFA per each shift or reduction. If the operation
to be applied cannot be deterministically decided in some
configuration, then the deterministic LR parsing is not ap-
plicable to this grammar.

Generalized LR parsing, first proposed by Lang [65)
and later independently discovered and developed by
Tomita [136], is a polynomial-time method of simulating
nondeterminism in the deterministic LR. Every time a de-
terministic LR parser has to choose an action to perform
(to shift an input symbol or to reduce by one or another
rule), a generalized LR parser performs both actions, stor-
ing all possible contents of an LR parser’s stack in the

form of a graph, which contains O(n) vertices and there-
fore fits in memory of size O(n?). If carefully implemented,
the algorithm is applicable to every ordinary context-free
grammar, and its complexity can be bounded by a poly-
nomial of a degree as low as cubic. It can be straight-
forwardly extended to conjunctive grammars [85], while
maintaining its cubic-time complexity; a further extension
to Boolean grammars requires more significant modifica-
tions, and runs in time O(n?*). The main advantage of this
algorithm over those described in Sections 5.1 is that
it works much faster on “good” grammars: for instance,
in linear time on the Boolean closure of the deterministic
context-free languages [85].

The Generalized LR uses a graph-structured stack to
represent the contents of the linear stack of an ordinary
LR parser in all possible branches of a nondeterministic
computation. This is a directed graph with a designated
source node, representing the bottom of the stack. Each
arc of the graph is labelled with a symbol from ¥ U N.
The nodes are labelled with the states of a DFA process-
ing the labels on the path from the source node. This
would typically be one of the DFAs defined for the De-
terministic LR, and it is used merely to help the parser
handle at least some decisions deterministically; if a triv-
ial one-state automaton is used, the algorithm degrades to
an inconvenient variant of a tabular parser. In particular,
the source node is labelled with the initial state. There is
a non-empty collection of designated nodes, called the top
layer of the stack. Every arc leaving one of these nodes
has to go to another node in the top layer. The labels
of these nodes should be pairwise distinct, and hence the
number of top layer nodes is bounded by a constant.

Initially, the stack contains a single source node, which
at the same time forms the top layer. The computation
of the algorithm is an alternation of reduction phases, in
which the arcs going to the top layer are manipulated with-
out consuming the input, and shift phases, where a single
input symbol is read and consumed, and a new top layer
is formed as a successor of the former top layer.

The shift phase is carried out as illustrated in Figure
Let a be the next input symbol. For each top layer node
labelled with a state ¢, the algorithm follows the transition
of the DFA from ¢ by the symbol a. If the transition leads
to a certain state ¢/, a node labelled with this state is
created in the new top layer. If it is undefined, this branch
of the graph-structured stack is removed.

Figure 4: The shift phase in the Generalized LR parsing algorithm.

19

The reduction phase is a sequence of additions and
removals of arcs labelled with nonterminals and leading
to the top layer. Assume that the grammar has a rule
A— o &...&am&61&...& Bn. Then, whenever
the graph contains a node ¢, which is connected to any
nodes in the top layer by the paths aq, ..., ay,, and is not
connected to the top layer by any of the paths S, ..., Gy,
the parser may perform a reduction by this rule, adding
an arc labelled A from ¢ to a node in the top layer labelled
with the appropriate state of the DFA. This is illustrated
in Figure [

Figure 5: Reduction by arule A > a1 & ... & am & L1 & ... & ~Pn
in the Generalized LR algorithm for Boolean grammars.

If the grammar is conjunctive, the condition for doing
a reduction is existence of paths ag,...,a,,, and no arcs
are ever removed during the reduction phase. Hence, these
paths will stay in the graph. For a general Boolean gram-
mar with negation, any of the paths f1,..., 3,, that were
absent from the stack at the moment of the reduction,
may appear later as a result of some other reductions, and
then the earlier added arc labelled A might no longer be
justified (unless there is another rule that warrants its ex-
istence). In such a case, the parser is entitled to invalidate
the earlier reduction, removing the unjustified arc.

The input string is accepted, if the last reduction phase
(the one after shifting the last input symbol) produces
an arc labelled S from the source node to the top layer,
which represents a parse of the entire string according to
the grammar. The algorithm works correctly—that is, ac-
cepts if and only if the string is in the language—for every
conjunctive grammar. It also works correctly for most
Boolean grammars [07], although a grammar expressing
a contradiction, such as S — -5, would bring a parser
into an infinite cycle of reductions and invalidations. The
worst-case running time of the algorithm depends on how
efficiently the operations on the graph are implemented.
For conjunctive grammars, it can be made to work in time
O(n?) [85], while for Boolean grammars, the best upper
bound is O(n*) [97]. However, one of the main benefits
of this algorithm is that it works much faster on “better”
grammars: for instance, in linear time on Boolean combi-
nations of LR(1) context-free grammars [85].

Besides recognizing the membership of an input, the
algorithm can construct its parse tree in course of its com-
putation. It is sufficient to augment the representation of

each arc in the graph with a pointer to the corresponding
subtree. A larger subtree shall be constructed with each
reduction, while each invalidation would require garbage
collection.

Two implementations of the algorithm exist: there is
an impractical reference implementation made by the au-
thor [86], which is suitable mainly for research purposes,
and there is also a more useful Java-based parser generator
developed by Megacz [79].

5.4. Recursive descent

The recursive descent is likely the simplest and the
most well-known parsing method, which has been in use
since the early 1960s. It is applicable to a subclass of or-
dinary context-free grammars, known as the LL(k) gram-
mars, where k is the number of lookahead symbols [75].
This method was extended to conjunctive and Boolean
grammars [84], [T0T], and is applicable to their appropri-
ately defined LL(k) subclasses.

A recursive descent parser is a program containing a
procedure for every terminal and nonterminal symbol used
in the grammar. These procedures have access to the input
string w = ajaz . .. aj,| and to a positive integer p pointing
at the current position in this string.

The code for each procedure a(), with a € X, simply
checks that the next input symbol is a, and advances p to
the next position. For each A € N, the procedure A() be-
gins with deterministically choosing one of the rules for A,
using the next k input symbols. Once arule A — X;... Xy
is chosen, the subsequent code Xi();...X(); parses the
following substring according to this rule, using the cor-
responding procedures to parse its substrings. Each pro-
cedure X;() advances the position in the input string, so
that the next procedure deals with a subsequent substring.
In total, A() advances the position in ¢ steps, consuming
a substring generated by A.

The extension of recursive descent parsing to conjunc-
tive grammars [84] implements the conjunction by scan-
ning a single substring multiple times. If a parser chooses
arule A —» X;... X, &Y ...Y,,, its computation begins
by storing the current position in the input in a local vari-
able. Then it invokes the code Xi();...X,(); and thus
parses the substring according to the first conjunct. Next,
it stores the final position in the string in another local
variable, rewinds the pointer to the stored initial position
and parses the string according to the second conjunct, us-
ing the code Y1();...Ymn();. Once the last of these proce-
dures returns, the parser checks whether the final position
is the same as the one after parsing the first conjunct. If
they are different, an error is reported. This ensures that
the parser has obtained two parses of a single substring.

In a recursive descent parser for a Boolean gram-
mar [TI0I], the negation is implemented using the mecha-
nism of exception handling. First of all, the parser reports
every error by raising an exception, and then the runtime
environment of the programming language proceeds with

20

unwinding the stack, until a frame with an exception han-
dler is found, and passes control to the handler. Excep-
tions are handled by negative conjuncts. The code for a
negative conjunct —Y7 ...Y,, encloses the code for a pos-
itive conjunct Y7 ...Y,, within an exception handler. If
the enclosed code reports a syntax error, the exception
handler regards this conjunct as successfully checked, and
proceeds to checking the next conjunct of this rule (or if
this was the last conjunct in the rule, the procedure sets
the pointer to the stored final position and returns). How-
ever, if the enclosed code successfully terminates, and thus
reports a parse of the current substring as Y; ...Y,,, this
means a syntax error in parsing this substring as A, and
an exception is raised.

The algorithm can be naturally modified to construct
a parse tree of the string. Whenever an instance of a pro-
cedure A() successfully returns, consuming a substring u
of the input, it can return a parse tree of u from A in
its return value. This parse tree is constructed from the
subtrees returned by the procedures invoked by A().

For a grammar to be used with the recursive descent,
it should, first of all, have no left recursion: that is, an
attempt to parse a string w according to A € N should
never require parsing a prefix of w according to the same
A. Such a left recursion would require the procedure A()
to call itself without consuming any input symbols, thus
going into an infinite loop. For example, recursive descent
parsing is not applicable to the grammar A — Aa | . In
the general case of Boolean grammars, this condition is
defined as follows.

Definition 8 ([101]). Let G = (£, N, R, S) be a Boolean
grammar, and let the conjunctive grammar G4
(X, N, Ry, S) be defined by removing all negative conjuncts
from every rule in G. The grammar G is said to be
strongly non-left-recursive, if for every recursive depen-
dence by any rules

AO — &i91A1n1&7
Am—Q — --~&:|:9m—1Am—1nm—1&-~-,
Am,1 — &ieon’f]m&,

where 0;,m; € (S UN)*, it holds that € ¢ Lg, (01...0n).

If a grammar does not satisfy Definition [8] this leaves
open the possibility of the procedures Ag(), Ai(), ...,
Apm—1, Ap() recursively calling each other without consum-
ing any input symbols, thus producing an infinite branch
in the tree of recursive calls.

For every strongly non-left-recursive grammar, the cor-
responding system of language equations has a strongly
unique solution [I0I], and therefore, Definition [§] already
rules out the problematic cases in the definition of Boolean
grammars. Assuming this property, it remains to ensure
that the rule for a nonterminal can be unambiguously de-
termined by examining only k next input symbols.

Definition 9 ([I01]). Let G = (X, N, R, S) be a strongly
non-left-recursive Boolean grammar. A string v € ¥* is
said to follow o € (X UN)*, if there is a sequence of rules

S — &ielAﬂ’]l&,

Al — &iggAgng&,
Am—2 - ...& iom—lAm—lnm—l &,
Am,1 — -~-&i9i+10ni+l&-~-7

with 0;,m; € (XU N)*, such that v € Lg(Nm, - .. n2m1).

The grammar is said to be LL(k) for k > 1, if there
exists such a function T: N x ©SF — R U {-}, that
for every rule A — @, for every string u € Lg(p)

and for every string v that follows A, the wvalue of
Ti(A, (the first k symbols of wv)) is A — .

The correctness of the recursive descent is established
as follows (the statement is slightly simplified for better
understanding).

Theorem 12 ([I01]). Let k > 1, let G = (X, N, R, S)
be an LL(k) Boolean grammar, and let T: N x LSF —
RU{=} be its parsing table. Then, for everyy,z € £* and
X1,...,X¢ €BUN (£ >=0), such that z follows X1 ... Xy,
the code X1();...; X¢(), executed on the input yz,

o returns, consuming y, if y € La(X1 ... Xo);
e raises an exception, if y ¢ La(X1 ... Xy).
The grammars from Examples[I] and [6] are both LL(1).

Example 18. The Boolean grammar for the language
{a™b"c™ |m,n > 0,m # n}, given in Example[6, is LL(1),
and its smallest LL(1) table is given below.

€ a b c
S | S4AB&—-DC S—AB&—-DC S—AB&—-DC —
A A—e¢ A — aA A—¢ —
B B —e — B — bBc B—e
C C—=e — — C —cC
D D —e¢ D — aDb D —e¢ D —e¢

On the other hand, the grammar in Example [2] is not
LL(k) for any k, due to the ambiguity in the choice be-
tween the rules E — ¢ and E — a (or E — b). It remains
unknown whether the language {wcw|w € {a,b}*} is gen-
erated by any LL(k) Boolean grammar.

Some limitations of LL(k) Boolean grammars have
been established.

Theorem 13 (Okhotin [I08]). Every Boolean LL(k)
language over a one-symbol alphabet is reqular.

Theorem 14 (Okhotin [108]). For every Boolean
LL(k) language L C X* there exist constants d,d’ > 0 and
p = 1, such that for allw € ¥*, a € X, n > d - |w|+d
and i >0,

wa"™ € L if and only if wa" T € L

21

These theorems, in particular, imply that there are no
Boolean LL(k) grammars for the linear conjunctive lan-
guage {a™?" | n > 0} and for the conjunctive language
{a*" |n > 0}.

More detailed results on the limitations of LL(k) lin-
ear conjunctive and LL(k) linear Boolean grammars are
known [108], and the former was proved to be strictly less
powerful than the latter. Unfortunately, as far as general,
non-linear LL(k) grammars are concerned, Theorems
are all tools available at present. In particular, it is not
known whether LL conjunctive and LL Boolean grammars
are equal in power.

For ordinary context-free grammars, LL parsing can
be equally implemented using the recursive descent or us-
ing a special kind of a deterministic pushdown automa-
ton without internal states, driven by the LL(k) table T.
LL parsers of the latter kind can be generalized to LL(k)
conjunctive grammars [84] by using a tree-structured stack
instead of the standard linear stack. This model was stud-
ied by Aizikowitz and Kaminski [2, B], who extended it
with states and established the equivalence of its nonde-
terministic variant to the definition of conjunctive gram-
mars by term rewriting. Aizikowitz and Kaminski [4] have
further proposed a space-efficient implementation of such
automata that represents their tree-structured stack as a
graph-structured stack (similar to the one used in Gener-
alized LR parsing). This might serve as a foundation for
a new parsing technique.

6. Advanced approaches to parsing

This section describes several parsing methods, that
have theoretically superior performance to the basic pars-
ing algorithms discussed above. Even though some of them
are quite unlikely to be useful in practice, they are impor-
tant for understanding the theoretical complexity of formal
grammars.

6.1. Parsing by matriz multiplication

Consider the basic cubic-time parsing algorithm from
Section[5.1] The most time-consuming operation in the al-
gorithm is computing the unions U; ; = Ufc;hl Ty x T j,
in which U; ; represents all concatenations BC' that gener-
ate the substring a;41 . .. a;, and the intermediate position
k is a cutting point in this substring, with B generating
@it1 - .. ai and with C generating ay41 . .. a;. If each union
is computed individually, as it is done in the basic algo-
rithm, then spending linear time for each U; ; is unavoid-
able. However, if such unions are computed for several sets
T;; at a time, then much of the work can be represented
as Boolean matrix multiplication. This is illustrated in the
following example:

Example 19 ([I05]). Let w = ajasazasas be an input
string and consider the partially constructed parsing table
depicted in Figure@ with T; ; constructed for 0 < i < j <
3 and for 2 < i < j <5, that is, for the substrings ajasas

and agaqas, as well as for their substrings. Denote by A; ;
the Boolean value indicating whether A is in T; ; or not.
Then the following product of Boolean matrices

(Boo Bogs) o (Coa Chps) _ (Xo,4

Bi2 DBig3 C3a Csp5 X14
represents partial information on whether the pair (B, C)
Uoa Uops)
Ui,a Uis
To be precise, X1,4 computes the membership of (B,C) in
Ui 4 exactly; Xo4 does not take into account the factoriza-
tion a1 -asasay, which actually requires knowing whether C
is in Th4; the element Xy 5 is symmetrically incomplete;
finally, Xo5 misses the factorizations ay - agazasas and
arasasay - a5, which can be properly obtained only using
Toa and T1 5. In total, this matriz product computes 8
conjunctions out of the 12 needed for these four elements
of U.

Xo5
X5

should be in the following four elements: (

01 2 3 4 5
0 oo
1|4 |e|e &
2 % eYe|®
3 G lele
4 44 e
5 as

Figure 6: Using the product of two 2 x 2 Boolean matrices in a
parsing algorithm to calculate multiple concatenations at once.

Already in this small example, using one matrix prod-
uct requires changing the order of computation of the ele-
ments {T; ;}: the elements Tj 3 and T5 5 need to be calcu-
lated before Tj 4. Furthermore, the subsequent computa-
tion should be arranged to take care of the four remaining
factorizations, which also must be considered in a specific
order, evaluating T; ; = f(U; ;) for the appropriate entries
at the appropriate time. This is achieved by a recursive
partition of the matrix, discovered by Valiant [I38], which
arranges the computation of the products Tjj x T} 5, so
that as much work as possible is offloaded into products
of the largest possible matrices. Once Valiant’s [I38] algo-
rithm is simplified by removing its intermediate algebraic
layer of abstraction (not discussed in this survey), and its
data structures are changed accordingly, it becomes appli-
cable to Boolean grammars.

Theorem 15 (Valiant [138]; Okhotin [105]). For ev-
ery Boolean grammar G in binary normal form, there
exists an algorithm constructing the sets T; ; = {A €
N | aj41...a; € Lg(A)} for a given input string
w = aj...a,. The algorithm operates in time O(|G| -
BMM(n)logn), where BMM(n) is the time needed to mul-
tiply two n x n Boolean matrices. Assuming BMM(n) =
Q(n**e), the complexity is O(|G| - BMM(n)).

22

Besides the table T; ; with 0 < 7 < j < n, the algorithm
utilizes a second data structure, comprised of the elements
U;; € N x N with 0 < i < j < n, each corresponding to
the value of R computed by the cubic-time algorithm for
the appropriate substring. Their target values are U; ; =
{(B,C) | ajt1...a; € L(B)L(C)}.

On an input of length 2* — 1, the algorithm multiplies
submatrices of size 1 x 1, 2 x 2, 4 x 4, ..., 2F=2 x 2k=2,
In the course of the computation, each entry U; ; is grad-
ually filled with elements corresponding to different split-
ting points of the string a;41 ... a; into a concatenation of
two strings, and for each splitting point, the exact matrix
product that handles this concatenation is handled in one
of the branches of recursion known in advance. Once all
partitions are handled in the corresponding branches of
recursion, and thus U; ; is constructed completely (which
happens at a pre-determined point of the computation),
the set T; ; is obtained out of U; ; by the function f de-
fined above.

Corollary 15.1. Testing whether a given Boolean gram-
mar G generates a given string w of length n can be done
in time O(|G| - n¥), for some w < 2.376, using the matriz
multiplication method of Coppersmith and Winograd [T7).

The algorithm is perfectly suitable for practical im-
plementation, as it can out-perform the basic cubic-time
algorithm already on fairly short inputs. Products of
Boolean matrices of a moderate size are best calculated by
the algorithm by Arlazarov et al. [7], which uses O(longdn)
bit operations. For very large matrices, it can be re-
placed by Strassen’s [I31] algorithm with the running time
O(n'°827). An implementation recently given by Okhotin
and Reitwieiner [IT1] uses a Graphics Processing Unit for
matrix multiplication.

The algorithm can be augmented to construct a
parse tree of the input string as follows. The sets
Ui; € N x N shall be replaced with functions U] ;: N x
N — {—,1,...,n}, where U; ;(B,C) = k indicates that
Aiy1...ax € Lg(B) and ag41...a; € Lg(C), that is, the
substring is split as B - C' with the splitting position k.
While the original sets U; ; are obtained by Boolean ma-
trix multiplication, calculating the splitting positions for
Ui’,j is the problem of finding witnesses for Boolean ma-
triz multiplication, solved by the algorithm by Alon and
Naor [5], which uses O(M (n)log®n) operations in a fi-
nite ring, where M (n) is the number of ring operations
for matrix multiplication. Using this procedure, instead
of the ordinary Boolean matrix multiplication in the algo-
rithm in Theorem yields an algorithm for constructing
a parse tree in time O(|G| - n*) with w < 2.376.

6.2. Parsing by convolution for unary inputs

For a Boolean grammar over a one-symbol alphabet,
the basic cubic-time recognition algorithm presented in
Section [5.1| can be straightforwardly modified to work in
time O(|G| - n?) on an input string a”. Indeed, since

all substrings of any given length are identical, the ta-
ble T; ; = {A| aiy1...a; € Lg(A)} can be replaced with
T, = {A|a* € Lg(A)}, and the formula for calculating
each entry takes the form

—1
T, = f(Ue), with U= | T x Toy,

=1

where f: 2VXN 5 2N represents the Boolean logic in the
rules, as defined in Section [5.1

In the case of a general alphabet, as described in Sec-
tion the whole bulk of bit operations necessary to cal-
culate the unions U; ; for all T; ; can be split into multiple
Boolean matrix multiplication subproblems, which allows
using fast algorithms for this problem to achieve subcubic
running time. For a one-symbol alphabet, the calcula-
tion of all Uy, can similarly be split into multiple instances
of the convolution of Boolean vectors, which may be re-
garded as the one-dimensional analogue of Boolean matrix
multiplication. The convolution of two Boolean vectors
z = (xg,...,Zn—1) and ¥y = (yo, ... ,yn,l),l denoted by
x oy, is a vector (2, ..., 2an_2), with 2; \/;.:O i NYi—j,
and this operations can be used in the calculation of U, as
follows.

Example 20 (cf. Example . Let w = a® and as-

sume that the membership of strings of length up to 3 in
the languages of each monterminal has already been cal-
culated and stored in Ty, 15, T3 C N. Denote by A; the
Boolean value indicating whether A is in T; or not. Then
the Boolean convolution

(B2, B3) o (C5,C3) = (X4, X5, Xg)

represents partial information on whether the pair (B, C)
should be in the elements Uy, Us, Ug. The value X4 = By A\
Cs represents one out of three necessary conjunctions, with
the conjunctions By AC3 and B3 ACy missing; X5 = (Ba A
C3)V(B3ACy) includes two conjunctions out of four, where
the remaining conjunctions, By A Cy and By N\ Cy, require
knowing the membership of B and C in Ty; finally, X¢ =
B3 A\ C3 is one out of five conjunctions needed for Ug.

There is a way of distributing the full set of n? concate-
nations used in the algorithm into convolutions of Boolean
vectors of size 1,2,4, ... 20827 g0 that each U; is fully
computed before the corresponding T; is accessed. This
partition, first proposed by Fischer and Stockmeyer [25]
in their algorithm for online integer multiplication, can be
regarded as the one-dimensional case of the similar parti-
tion used in parsing by matrix multiplication.

Theorem 16 (Okhotin, Reitwieiner [112]). For ev-
ery Boolean grammar G = ({a}, N, R, S) in binary normal
form, there exists an algorithm, which, given a number
n > 1, constructs the sets T, = {A € N |a* € Lg(A)}
for all ¢ € {1,...,n}. The algorithm works in time
O(|G| - BC(n)logn), where BC(n) is the time needed to
calculate convolution of two Boolean vectors of length n.

23

If convolution is implemented through integer multipli-
cation, and the latter is performed by the fastest known
algorithm due to Fiirer [2§], this yields an algorithm with
the running time |G|-nlog® n-200°8" 7) [I12]. If the gram-
mar is unambiguous, the reduction to integer multiplica-
tion can be made more efficiently, improving the running
time to |G| - nlog®n - 200°e™ ™) [112).

6.3. On parallel parsing

The most efficient sequential parsing algorithm known
for Boolean grammars of the general form is the one given
in Section which works on an input string of length n
in time O(BMM(n)logn), where BMM(n) is the complex-
ity of Boolean matrix multiplication. No faster sequential
algorithms are known even for ordinary context-free gram-
mars.

A straightforward attempt to parallelize the basic
cubic-time parsing algorithm leads to the following un-
sophisticated result.

Theorem 17. For every Boolean grammar G
(X,N,R,S) in binary normal form there exists a
uniform family of Boolean circuits of depth ©(n) and with
O(n?) gates, recognizing the membership of strings of each
length n in the language L(G).

The circuit directly simulates the algorithm in Sec-
tion For each nonterminal A € N and for each sub-
string a;41...a; of the input, with 0 < ¢ < j < n, the
circuit contains a gate w4 ;;, representing the member-
ship of @j+1...a; in Lg(A). The membership of the same
substring in Lg(BC), for all B,C € N, is calculated in
another gate, ypc,i,;. Then, as in Section

i—1
YBC,i,j = \/ TB,ik NTCk,j»
k=i+1
TAGG = fA(« -+»YBCij, - - .)7
where the function f4: BY*Y — B represents the Boolean

logic in the grammar. If the disjunction in the formula for
YBC,i,; is calculated in a binary tree of height log,(j —),
the depth of the entire circuit will be of the order nlogn.
Overall linear depth of the circuit is achieved by calculat-
ing the conjunction for k& = [25* | first, and then continu-
ing with k =i+t and k=14 —tfor t = [15*| —1,...,1.
For ordinary context-free grammars, there exists a
much more efficient parallel parsing method, indepen-
dently discovered by Brent and Goldschlager [12] and by
Rytter [125]. The Brent—Goldschlager—Rytter parallel al-
gorithm is implemented on a uniform family of O(log2 n)-
depth Boolean circuits with O(n%) gates, and, in particu-
lar, establishes the containment of the ordinary context-
free languages in the complexity class NC?. Its main idea
is best explained in terms of the definition of grammars
by deduction. As always, the goal of the algorithm is to
deduce elementary propositions of the form [A, u], where

A is a nonterminal symbol and wu is a substring of the in-
put, which mean that v € Lg(A). The truth value of
each proposition is calculated in one of the gates of the
circuit. However, the tree of deduction of such an item
may have linear height: this is already the case for the
grammar S — aS | €. In order to obtain a deduction tree
of logarithmic height, the algorithm further undertakes to
deduce conditional propositions of the form [D,v] F [A, u],
where u is a substring of the input and v is a substring of
u, representing the condition that if [D,v] holds true, then
so does [A,u]. In other words, a conditional proposition
represents a parse tree of u from A with a hole instead of
a subtree of v from D. When this partial parse tree is of
approximately the same size as the hole, this allows carry-
ing out two deductions in parallel, thus halving the height
of logical dependencies.

Unfortunately, this method does not generalize to
Boolean grammars. Since every rule may have multiple
conjuncts, each with its own set of dependencies, in this
case, splitting a deduction of an item [A,u] into multiple
parallel deductions would require using conditional propo-
sitions of the form [Dy,v1],...,[Dg,vx] F [A,u], where
k = ©(n). As there would be exponentially many such
conditional propositions, no feasible algorithm can appar-
ently be obtained along these lines. This applies already
to linear conjunctive grammars.

In general, it is wunlikely that there is any
polylogarithmic-time parallel recognition algorithm for lin-
ear conjunctive grammars, for the reason that there ex-
ists a fixed grammar generating a P-complete language—
which was first proved by Ibarra and Kim [47] using trellis
automata—and if this single language is in NC* for any
k, this would imply that NC = P, which is generally be-
lieved to be untrue. All known examples of linear con-
junctive grammars generating P-complete languages are
fairly complicated [90, 106], and the possibility of defin-
ing a P-complete problem by a Boolean grammar is better
explained in the following example.

Example 21 (Okhotin [106]). The following Boolean
grammar generates a P-complete language.

S — —AS&-CS
A — dAle
C — aCAb|D

The grammar can be made LL(1) by adding a new non-
terminal E generating {a,b}*, and adding a conjunct E to
the rule for S.

The language generated by the grammar is the set of
yes-instances for a variant of the circuit value problem. In
this variant, every gate x; computes the NOR function,
x; = xi—1 A 1x;,, where the first argument is always the
preceding gate, and the second argument can be any of
the previous gates, j; < ¢. Such an n-gate circuit is repre-
sented as a string a® 1 7Inba" "2 7In-1p ... a?"I3bal 72D,
The grammar generates such descriptions of all circuits

24

that evaluate to 1, and the definition, contained in the
rule S — —AbS & —CS, inductively refers to the symbol
S to determine the values of the previous gates. The con-
junct AbS represents the circuits, in which the (n — 1)-th
gate has value 1, the conjunct C'S specifies that the gate
number j,, pointed by the string " ~!~J~, has value 1.
The negation of both conditions given in the rule for S
implements the NOR operation.

6.4. Space complexity

All tabular parsing algorithms for Boolean grammars,
presented in Sections and 6.1} require ©(n?) bits
of memory, where n is the length of the input string. Gen-
eralized LR uses space C - n? in the worst case. The pro-
totypes of these algorithms earlier developed for ordinary
context-free grammars need the same amount of memory.

At the same time, there exist special polylogarithmic-
space recognition procedures for ordinary context-free
grammars. The first of them, using space O(log?n) on
a Turing machine, was discovered by Lewis, Stearns and
Hartmanis [76, Thm. 4]. The Brent—Goldschlager—Rytter
parallel algorithm [12| [125] for ordinary context-free gram-
mars, described in Section above, actually has an sim-
ilar underlying idea to the algorithm of Lewis et al. [76],
and can be implemented on a O(log? n)-space Turing ma-
chine by simulating its circuit. Compared to these results,
the best currently known upper bound on the space com-
plexity of Boolean grammars is very modest.

Theorem 18 (Okhotin [94]). For every Boolean gram-
mar G, there exists and can be effectively constructed a
deterministic linear-space Turing machine recognizing the
language L(G).

The argument given in the cited paper is by an explicit
construction of such a machine, presented as a rewriting
system that processes an input string. Alternatively, one
can obtain such a machine by simulating the uniform cir-
cuit of depth ©(n) presented in Theorem

7. Theoretical topics

7.1. Grammars over a one-symbol alphabet

Conjunctive grammars over a unary alphabet form a
special area of study. Though such grammars are com-
pletely irrelevant to the main purpose of formal grammars,
that of representing syntax, they are theoretically impor-
tant as a pure case of conjunctive grammars, which al-
ready shows some of their distinctive properties. Further-
more, they are crucial in the study of language equations,
where their properties form the basis of the study of the
more general language equations over a unary alphabet
52, B3], B8 [71, [72].

The idea of manipulating positional notation of num-
bers, first discovered by Jez [49] in his grammar for the
language {a*" | n > 0} (Example , was subsequently

used to obtain the following general result. Consider a
trellis automaton over an alphabet of k-ary digits, that
recognizes some set of numbers, which are given to it in
base-k notation. Then, there exists a conjunctive grammar
that defines the same set of numbers, this time in unary
notation.

Theorem 19 (Jez, Okhotin [50]). Let ¥, = {0, 1,
., k= 1} with k > 2 be an alphabet of k-ary dig-
its, and let L C X} be a linear conjunctive language
that contains no strings beginning with 0. Then, there
exists a conjunctive grammar generating the language
{a™ | the k-ary representation of n is in L}.

The proof is by simulating a trellis automaton M =
(3k,Q, 1,6, F) operating on positional notation of num-
bers, and doing so in terms of their unary representation.

Consider first a linear conjunctive grammar G
(X, N, R, S) simulating this automaton in base-k nota-
tion, as it is given in Theorem This grammar has a
nonterminal A, for each state ¢ € @, where Lg(4,) C &
is the set of all strings of digits, on which M computes the
state ¢. Whenever there are strings of digits iw € Lg(Ay)
and wj € Lg(Agy) with 4,5 € ¥ and w € X}, and the
automaton has a transition 6(¢’,¢"”) = ¢, the string iwj
should be in Lg(Ay), and a linear conjunctive grammar
over X, implements this by a rule A, = Ay & Agrj.

In Theorem [19] the goal is to represent the unary nota-
tion of the very same numbers by a conjunctive grammar
G' = ({a}, N',R',S"). For every string of digits w € Xy,
denote the number it represents by (w)g. Ideally, one
would construct a grammar with the nonterminals B, for
each ¢ € @, which would generate all such strings a”,
that M calculates the state ¢ on the base-k notation of
n. However, such a construction does not work as it is,
due to several reasons; in particular, obtaining a string
alk out of the string a(™)* would require multiplying
the number (iw), by k, which is hardly possible using only
concatenation of unary strings.

The actual grammar constructed in Theorem [I9] in-
deed has a nonterminal B, for each state of the trellis au-
tomaton, but uses the following encoding: for any string
w € Ez, on which the trellis automaton calculates the
state ¢, the language B, contains all strings of the form

a1 10k with ¢ > 0, where the string w’ is obtained from
w by subtracting 1 from the number it represents. For
this encoding, it is possible to construct expressions \;(L)
and p;(L), which concatenate a single digit ¢ to the left
and to the right of the string of digits encoded in each el-
ement of L C a*. These expressions are constructed using
the operations of union, intersection and concatenation,
and a number of separately expressed constant languages.
Once these expressions are transcribed in the grammar,
one can simulate each transition of a trellis automaton
directly, using \;(Bg) N p;(Bqr) instead of iAy N Agrj.
The last step of the construction decodes the language
{a()x | w € L(M)} out of the encodings given in B,.

25

The unary simulation of trellis automata was subse-
quently reimplemented by Jez and Okhotin [57] using an
unambiguous conjunctive grammar, though under some re-
strictions on the use of digits in the original language.

A similar method was used to construct a set of num-
bers, whose binary representations form an EXPTIME-
complete set, so that the set of unary representations of
the same numbers is defined by a conjunctive grammar.

Theorem 20 (Jez, Okhotin [51, Thms. 2,3]). There
exists an alphabet ¥ = {0,1,...,k — 1} with k > 2
and an EXPTIME-complete language L C X3, such that
the language {a™ | the k-ary notation of n is in L} s
generated by a conjunctive grammar.

This, in particular, leads to the following result.

Corollary 20.1. The compressed membership problem
for conjunctive grammars, defined as “Given a conjunctive
grammar Gy = (X, N, R, S) and a string w € ¥* presented
as a context-free grammar G with L(G) = {w}, determine
whether w € L(Go)” is EXPTIME-complete. It remains
EXPTIME-complete for a fixed Gy (as in Theorem @)

The similar problem for ordinary context-free gram-
mars is PSPACE-complete [120], while for a one-symbol
alphabet it is NP-complete [44].

7.2. Descriptional complexity

It is known from Gruska [36] that the languages defined
by ordinary context-free grammars form an infinite hier-
archy with respect to the number of nonterminal symbols
needed to define them; that is, for every n > 2 there ex-
ists a language representable using n nonterminals and not
representable using n — 1 nonterminals. Unfortunately, it
remains unknown, whether conjunctive or Boolean gram-
mars have a similar property (see Problem@in Section
However, for linear conjunctive grammars, the hierarchy of
n-nonterminal languages collapses at level two, due to the
following result.

Theorem 21 (Okhotin [93]). For every trellis automa-
ton M with n states, defined over an alphabet X, there ex-
ists and can be effectively constructed a linear conjunctive
grammar with 2 nonterminal symbols generating the same
language. The grammar has at most 920 ios 2D rules, each
containing O(n) conjuncts, and with O(n) symbols in each
conjunct.

In fact, the entire machinery of a trellis automaton is
encoded in a single language L C X7, which is generated
by a single nonterminal. The second nonterminal is needed
to decode L(M) from the language of the first nonterminal.
This language L reflects the states computed by M on all
strings of length 0 modulo 6n — 1. To that effect, a string
wy, with |w| = 0 (mod 6n—1) and |y| = 2i—1, belongs to L
if and only if the trellis automaton computes its i-th state
¢; on w, and a similar condition defines the membership

of a string xy with |w| = 0 (mod 6n — 1). Then, every
rule of the constructed grammar uses this information to
decode the states computed by the trellis automaton on
6n adjacent substrings of the same length, and then uses
the pre-computed result of the automaton’s computation
on these states.

Conjunctive grammars over a unary alphabet with a
unique nonterminal symbol are already non-trivial. The
first example of their non-triviality, given by Okhotin and
Rondogiannis [I13], was actually an encoding of Exam-
ple [this survey includes a slightly simpler encoding of
the very same example:

Example 22. The conjunctive grammar

S —a®85&a’SS | a*SS & a'’SS | a®SS & al?SS |
| aSS & a®SS | a't | a*® | a*®

generates the language {a* =% |n > 2} U {a**" =6 |n > 2}
U{a®*" =8| n>2} U {a®" 10 n > 2.

The example of Okhotin and Rondogiannis [I13] was
extended to the following general method of encoding any
unary conjunctive language in a one-nonterminal conjunc-
tive grammar.

Theorem 22 (Jez, Okhotin [54]). For every conjunc-
tive grammar G = ({a}, {41,...,An}, R, Ay) in the bi-
nary normal form, there exist numbers 0 < dy < ... <
d, < p depending only on n, such that the language
{aPn=4i |1 < i < n, a® € Lg(A;)} is generated by a one-
nonterminal conjunctive grammar.

Some limitations of one-nonterminal conjunctive gram-
mars are known.

Theorem 23 (Okhotin, Rondogiannis [113]). Let

L = {a™,a™,...;a",...} with0 < ny <mng < -+ <
n; < be an infinite unary language, for which
liminfi%m#il = 0. Then L is not generated by any
one-nonterminal conjunctive grammar.

In particular, no unary language with a super-
exponential growth rate, such as {a22n |n > 0} and
{a™ |n > 1}, can be represented by such grammars. The
above theorem also applies to sets like {a™' T |n > 1, i €
{0,1}}.

The next theorem applies to such languages as a* \
{a”2 |n >0}, a*\{a®"|n > 0} and or {a™|n is composite}:

Theorem 24 (Okhotin, Rondogiannis [113]). Let

L C a* be a non-regular language that is dense, in the
|LN{e,a,...,a™ " 1}]| -1
e .

sense that lim Then there is no

n—oo
one-nonterminal conjunctive grammar generating L.

The methods in Theorems essentially use the fact
that the grammar contains a single nonterminal symbol,
and therefore can only concatenate this symbol to itself.

26

Another special case of grammars demonstrating similar
properties are unambiguous conjunctive grammars with 2
nonterminals: the reason is that such grammars may not
concatenate any of these nonterminals to itself—any such
concatenation is bound to be ambiguous—and hence are
limited to concatenating these two nonterminals to each
other. This was used by Jez and Okhotin [56] to obtain
results similar to Theorems for this class of gram-
mars.

No methods for establishing any limitations of conjunc-
tive or Boolean grammars with three or more nonterminal
symbols are known.

7.3. Undecidable properties

One of the main techniques for proving undecidability
results in formal language theory, discovered by Hartmanis
[38], is by expressing one or another form of the language
of computation histories of a Turing machine. Accept-
ing computations of a Turing machine 7" over an input
alphabet 2 are represented as strings over an alphabet
I', with the computation of T on w € Q* represented as
Cr(w) € T*. The language of valid accepting computa-
tions is

VALC(T) = {wiCr(w) |w € L(T)},

defined over the alphabet Q UT U {}, where § ¢ QUT is
a separator. Hartmanis [38] has shown that, for a certain
simple encoding Cr : Q* — I'*, the language VALC(T) is
an intersection of two context-free languages. The tech-
nical details of this construction can be further refined to
represent VALC(T') as an intersection of two LL(1) linear
context-free languages [98], for another suitable encoding
Cr.

Therefore, for a proper choice of encoding Cr,
VALC(T) is linear conjunctive, which directly implies the
undecidability of the basic decision problems for this fam-
ily, such as emptiness, finiteness, regularity and equiva-
lence [83] 88]. Actually, there is a stronger result than just
the undecidability of the emptiness problem:

Theorem 25. For every fixed conjunctive language Lo C
¥* over an alphabet ¥ with |X| > 2, the problem of testing
whether L(G) = Lg for a given conjunctive grammar G
over ¥ is co-r.e.-complete (that is, complete for the com-
plements of the recursively enumerable sets).

The same result holds for unambiguous conjunctive,
Boolean, unambiguous Boolean and linear conjunctive
grammars, with a fixed language of the same type.

In contrast, for ordinary context-free grammars, equal-
ity to a fixed regular language is decidable if and only
if that language is bounded [42], and equality to a fixed
non-regular language has no known characterization of its
decidable cases. For unambiguous context-free grammars,
one can decide equality to a given arbitrary regular lan-
guage [127].

The proof of Theorem [25is by reducing the emptiness
problem for a Turing machine T to the problem in ques-
tion. There are two cases: if Ly has no subset of the form
woX*, for any string wg € X*, then the reduction function
constructs a conjunctive grammar for Ly U VALC(T)X*,
and if Ly has a subset woX* for some wyg € ¥*, then a
grammar for the language (Lo \ woX*) Uwe (X*\ VALC(T))
is similarly constructed. In each case, the constructed
grammar generates Ly if VALC(T') = @, and a different
language if VALC(T') # &. Since VALC(T) = @ if and
only if L(T) = @, this is a correct reduction.

Surprisingly, the above method of proving undecidabil-
ity results extends to grammars over a one-symbol alpha-
bet. Despite the apparent lack of structure in strings in
a*, a variant of the language of computation histories of a
Turing machine can still be represented. Let VALC(T)
be defined over a k-symbol alphabet, and assume that
the symbols of this alphabet are digits in base-k notation.
Then every string wiCr(w) € VALC(T') represents a cer-
tain natural number (wiCr(w))r € N. Since VALC(T)
is linear conjunctive, Theorem asserts that the set
(VALC(T))) of unary representations of these numbers
is defined by a conjunctive grammar.

This, in particular, leads to an adaptation of Theo-
rem [25] to a unary alphabet:

Theorem 26 (Jez, Okhotin [50, 57]). For every fized
conjunctive (unambiguous conjunctive) language Lo C a*,
the problem of testing whether a given conjunctive gram-
mar (unambiguous conjunctive grammar, respectively)
over {a} generates the language Lg is co-r.e.-complete.

Turning to the basic decision problems for conjunctive
grammars over a unary alphabet, the representation of the
unary version of VALC(T) is alone sufficient to prove their
undecidability. With the additional help of Theorem [22]
the language (VALC(T)); C a* can be further encoded
using a single nonterminal symbol, which leads to the fol-
lowing stronger undecidability results:

Theorem 27 (Jez, Okhotin [54]). Testing whether a
given one-nonterminal conjunctive grammar generates a
finite or a co-finite language is r.e.-complete. Testing
equivalence of two given one-nonterminal grammars is co-
r.e.-complete.

Summarizing the known results, the only predicate on
conjunctive languages known to be decidable is the mem-
bership of a string, and, along with it, all finite Boolean
combinations of such predicates (such as “w; € L or
we ¢ L”). At the same time, all known properties of
languages depending on infinitely many strings turned out
to be undecidable. This suggests a hasty generalization:
a conjecture that a non-trivial predicate on conjunctive
languages is decidable if and only if it depends on the
membership of finitely many strings. However, there is no
evidence in support of this conjecture, and some property
of an entirely different form may turn out to be decidable.

27

8. Comparison of formal grammars

8.1. Hierarchy of language families

In order to compare the expressive power of meaningful
models of syntax, one should begin with compiling a list
of such models. The main point of reference are, of course,
the ordinary context-free grammars (CF). Many important
familes of languages are defined by restricting context-free
grammars in one or another way. Prohibiting syntactic
ambiguity leads to the unambiguous context-free grammars
(UnambCF), and to their special cases: the LR (k) context-
free grammars, which define the deterministic context-free
languages (DetCF), and to the LL(k) context-free gram-
mars (LLCF). All these four classes are known to form a
chain of proper inclusions (LLCF C DetCF C UnambCF C
CF), and their fixed membership problem belongs to the
NC? complexity class [124] 12, [125]. The fixed member-
ship problem for DetCF and LLCF also belongs to the class
SC? = DTIMESPACE(n°™, log® n) [16].

Another common restriction is to allow only con-
catenation of the form wAv, where A is a nontermi-
nal and w,v are terminal strings. The corresponding
linear context-free grammars (LinCF) and their wunam-
biguous (UnambLinCF), deterministic (DetLinCF) and LL
(LLLinCF) subfamilies again form a chain of proper inclu-
sions (LLLinCF C DetLinCF C UnambLinCF C LinCF), and
each of them is a proper subset of its counterpart with un-
restricted concatenation. These families belong to lower
computational complexity classes: the family LinCF is a
subset of the nondeterministic logarithmic space (NL) con-
taining an NL-complete language, discovered by Sudbor-
ough [I32]; UnambLinCF is contained in the unambiguous
logspace (UL). As shown by Holzer and Lange [41], the
deterministic subfamily DetLinCF is a subset of the loga-
rithmic space (L), which contains an L-complete language;
Ibarra et al. [45] demonstrated that LLLinCF is contained
in NC".

Yet another useful restriction of the ordinary context-
free languages is defined by the input-driven pushdown au-
tomata (IDPDA), in which the input alphabet is split into
three classes, so that the type of the current symbol deter-
mines whether the automaton must push onto the stack,
pop from the stack, or ignore the stack. Input-driven au-
tomata were first studied by Mehlhorn [80], followed by
von Braunmiihl and Verbeek [II], and later rediscovered
and studied by Alur and Madhusudan [6] under the name
of “visibly pushdown automata”’. The corresponding lan-
guage family IDCF is a subset of DetCF by definition, and
it is also known to be incomparable with LLCF [107] and
with all families between LLLinCF and LinCF. Dymond [22]
showed that IDCF is contained in NC?.

Returning to the subject of this survey, the classifi-
cation of formal grammars is now extended by another
dimension, which is the set of allowed Boolean operations.
The ordinary context-free grammars, as well as all their
special cases mentioned so far, are restricted to disjunc-
tion only. Allowing the conjunction alongside the disjunc-

UnambConj UnambBool

P

Figure 7: The hierarchy of formal grammars, and their relation to computational complexity classes.

tion leads to the conjunctive grammars (Conj), and fur- tioned here, even though they are not included in the com-
ther allowing the negation results in the Boolean gram- parison. One of the models is the first-order logic over
mars (Bool). An exhaustive investigation of all possible positions in the string, augmented with a least fizpoint op-
sets of Boolean operations in grammars [I00] revealed only ~ erator, which, as established by Immerman [48] and by
one more non-trivial case: grammars with negation only, Vardi [139], defines exactly the polynomial-time languages.
which, although non-trivial [74], are quite unsuitable for =~ Rounds [123] was the first to understand this logic as a

representing syntax; their properties are of a purely theo- general model for defining syntax, and various kinds of
retical interest [T15], [TT6] and fall outside the scope of this formal grammars as its fragments. In particular, conjunc-
survey. tive grammars are representable in this logic by directly

Grammars with different sets of Boolean operations employing the conjunction, while Boolean grammars can
are subject to the same restrictions as ordinary grammars be represented by using a universal quantifier [95]. The ex-

with disjunction only. Unambiguous conjunctive gram- pressive power of first-order logic with fixpoints goes much
mars (UnambConj) and unambiguous Boolean grammars beyond conjunctive and Boolean grammars, and this logic
(UnambBool) are defined by restricting the use of concate- has a lot of potential for further studies in formal gram-
nation. Restricting concatenation to linear leads to lin- mars.

ear conjunctive grammars and linear Boolean grammars, The other model are the tree-adjoining grammars, de-
which are known to generate the same family of languages, fined by Joshi, Levy and Takahashi [58], which can be
LinConj. Every linear conjunctive grammar can be made described through the first-order logic with fixpoints, and
unambiguous (Corollary , so there are no unambigu- which are likely incomparable in power with conjunctive
ous subclasses in this case. For the reasons of succinctness, and Boolean grammars, though there are no known meth-

the hierarchy presented in this survey does not include the ods for proving that. In the absence of any research com-
LL subfamilies of conjunctive and Boolean grammars, as paring the models, there is nothing to report on in this
well as of their linear cases. An analysis of these classes survey; this would certainly be an interesting topic for fu-
and their relationship to each other can be found in the ture research.
literature [10§].

An inclusion diagram of all these families of languages 8.2. Closure properties

is presented in Figure [} For each family, the figure A family of languages L is said to be closed under
presents the smallest computational complexity class, in an operation f : 2% x ... x 2% — 2% if for all
which it is known to be contained. Ly,...,L, € L, the language f(Ly,...,L,) also belongs

Most of the inclusions in the figure are immediate, as to £. The closure of a language family under the basic
they assert that a less general model defines a subset of operations on languages, in particular, reflects the possi-

the family defined by a more general model: for instance, 1pjlity for expressing the syntactical conditions within this
LinCF is contained in both CF and LinConj, etc. The in- family. This section summarizes the known closure prop-
clusion IDCF C LinConj is the only one between apparently erties of the five language families surveyed in this paper:
unrelated formalisms [107]. those generated by linear conjunctive grammars (LinConj),
All stated inclusions are known to be strict, except the conjunctive grammars (Conj), Boolean grammars (Bool),
four inclusions between conjunctive and Boolean gram- unambiguous conjunctive grammars (UnambConj) and un-
mars, unambiguous and general. These inclusions are ambiguous Boolean grammars (UnambBool).
marked in the figure by arrows with question marks. To begin with the Boolean operations, all five fam-
There are two more models, which ought to be men- ilies LinConj, Conj, Bool, UnambConj and UnambBool are

28

U N ~ * w | R SHIFT h hetfree Peode h 1T
Reg + + + + + + |+ + [+ + + +
LLLinCF — 22 - [mo§ - [p2Y — 22 [- | — 22 — [108] — 122 — 22 -8 - [3
DetLinCF - — + - - — | — 29 — - B - B2 - +[29
UnambLinCF | — — ? — - - |+ - — [32] -B + +
LinCF + - - - - — |+ — + + + + B7
IDCF +* +* + [11] +* M4 4[4 — |+ [OnomE — - - - -
LLCF — 22 M2y — a2 — 22 [- | — M2 — [108] — 122 — @22 -8 — [
DetCF - B9 —p9 + P9 -9 —pa - | —[9 — — 29 - — [+ 9
UnambCF — — — [0) — |+ - - B2 -B2 4+ + B
CF + — [126] — [126] + + - |+ + [78, 118 | + + + —+° [31) 35
LinConj + + + B8, 02 | —[M34 —92 — |+ — [135] — 20,99 —[20] 4+ [©9 + [20/47]
UnambConj | ? + ? ? ? 2t + ? — A + [0+ [0
UnambBool | + + + ? ? 2t + ? — 21 + [0+ [
Conj + + ? + + 20+ ? — e + [70] +° [0, 109
Bool + + + + + 2t + ? - e + [70] +° [0, [109)

Table 1: Closure properties of different families of formal grammars: (*) closed, assuming the same partition of alphabets for IDCF; (Jf)
closure would imply P = NP; (°) the entire family represented as images of a single language.

closed under intersection, which is expressed by a di-
rect application of conjunction. In contrast, neither the
ordinary context-free languages nor any of their basic sub-
classes are closed under this operation. The union oper-
ation is directly expressed in all these families by using
multiple rules for a single nonterminal symbol, though it
is not known whether it preserves unambiguity of conjunc-
tive languages. The other unambiguous class UnambBool
is closed under union, which is proved by manipulating
negation to represent any union as a disjoint union [103].
Complementation is directly expressible in Boolean
grammars and preserves their unambiguity, but it is an
open problem whether Conj and UnambConj are closed un-
der it (see Problem [6] in Section [0.I). The closure of
LinConj under complementation is easily seen on trellis au-
tomata, though a direct construction for grammars is also
known [88].

Turning to concatenation-based operations, the fam-
ilies Conj and Bool are closed under both concatena-
tion and Kleene star, since they are directly express-
ible in grammars, while the closure of the unambiguous
subclasses UnambConj or UnambBool is uncertain. Lin-
ear conjunctive languages are not closed under concatena-
tion, which was proved by Terrier [I34], solving a long-
standing problem on cellular automata. The latter re-
sult easily implies the non-closure of this family under
Kleene star [02]. None of the families are closed un-
der the quotient, K~!' - L = {w|aw € L}, because
every recursively enumerable set can be represented as
a quotient of VALC(T) with a regular language. The
right- and left-quotient with a symbol, defined as
al L={w|aw e L}yand L-a~! = {w|aw € L}, are
both known to preserve LinConj and Conj [I10]. Similar
arguments should apply to Bool, and will likely extend to
UnambConj and UnambBool. The operation of interleaving
any two strings belonging to two given languages, known

29

as shuflle, denoted by K w L or K||L, and defined as
{191+ Ty | X1 .. 2 € K, y1...Ym € L}, does not
preserve ordinary context-free languages or any of their
basic subfamilies. The non-closure of the linear conjunc-
tive languages under shuffle can be proved by considering
the language ({a"ba®" |n > 0} b*) N (ab)*, which is left
as an exercise to the reader. It remains unknown whether
conjunctive and Boolean grammars with unrestricted con-
catenation, or their unambiguous subclasses, are closed un-
der shuffle. If any of these families is closed under shuffle,
this would imply P = NP, which can be proved by shuf-
fling a known P-complete linear conjunctive language [90]
with an appropriate regular language.

Consider the following two operations that rearrange
symbols in all strings of their language argument: re-
versal L% = {a,...a; | a1...a, € L} and cyclic
shift SHIFT(L) = {CLZ' R 7o & s P | |CL1 e Qi1 QG .. Ay €
L, 1 < i< n}. For each of the families in question, the
closure under reversal is obtained simply by reversing the
right-hand sides of all rules in a grammar. Several proofs
of the closure of the context-free languages under cyclic
shift are known [78 [[T8]; in particular, Hopcroft and Ull-
man [43] Exercise 3.4(c)] present a transformation of a
context-free grammar to a grammar for its cyclic shift.
Whether anything similar holds for Boolean grammars or
any of their variants, is unknown. As noted by Terrier [135]
Fact 6], linear conjunctive languages are not closed under
cyclic shift.

The last group of operations to be considered are ho-
momorphisms and some related operations. None of these
families are closed under general (erasing) homomor-
phisms, because every recursively enumerable language is
a homomorphic image of the language VALC(T') of com-
putation histories of the Turing machine defining the lan-
guage in question. For non-erasing homomorphisms,
linear conjunctive languages are known to be not closed,

while the closure of the other four families is an open
problem; however, it is worth mentioning that the clo-
sure would imply P = NP [90], which makes it unlikely.
All five families are closed under codes (that is, injec-
tive homomorphisms), and, more generally, under injective
mappings computed by generalized sequential machines
(GSM) [7Q]. For linear conjunctive languages, it is further-
more known that they are closed under a homomorphism
h if and only if either h is a code, or h erases all sym-
bols [99]. All five families are also closed under inverse
homomorphisms and inverse GSM mappings [70].

Concerning inverse homomorphisms, for ordinary
context-free grammars, there is a famous theorem by
Greibach [35], which states that there exists a single ordi-
nary context-free language Lo (“the hardest context-free
language”), so that every ordinary context-free language
L over any alphabet can be represented as an inverse ho-
momorphic image of Ly. The conjunctive grammars are
known to have their own “hardest language”, and so do
the Boolean grammars [109]. Whether a similar theorem
exists for linear conjunctive languages, is unknown.

All the mentioned closure properties are summarized in
Table |1l These results are compared to the (mostly) well-
known properties of ordinary context-free grammars and
their subfamilies. Discussing the closure properties of the
latter is beyond the scope of this survey. The references
to the literature given in the table attempt to point to the
most relevant work: in most cases, this is the paper, in
which the corresponding result was first established; and
occasionally, the table lists one or more papers providing
a further insight into applying the given operation to lan-
guages from the given class.

8.3. Decision problems

Let G be a family of grammars or automata. The fixed
membership problem for G is stated as follows: “For a
fized grammar G € G over an alphabet 3, given a string
w € ¥*, is w in L(G)?”. As explained in Section
this problem is P-complete for all five families of grammars
studied in this paper (LinConj, UnambConj, UnambBool, Conj
and Bool), because it is decidable in polynomial time, and
is P-hard for a fixed unambiguous linear conjunctive gram-
mar. The best running time among the known algorithms
for solving this problem is O(n?) for linear and unam-
biguous grammars, and O(n*) with w < 2.376 for general
conjunctive and Boolean grammars (see Section .

The more general uniform membership problem
includes the grammar as a part of the input: “Given a
grammar G € G over an alphabet 3, and a string w € X*,
is w in L(G)?”. The problem is again P-complete: it is
P-hard, because already the fixed membership problem is
P-hard, and polynomial-time solutions for this problem are
known: for Boolean grammars, a solution is given, for in-
stance, by the Generalized LR parsing algorithm described
in Section (.3

Other typical decision problems involve testing one or
another property of the language generated by a given

30

grammar. For instance, the emptiness problem is stated
as follows: “Given a grammar G € G, determine whether
L(G) is empty”. As shown in Section it is undecid-
able already for linear conjunctive grammars; to be more
precise, it is complete for the class of the complements
of recursively enumerable sets (co-r.e.). The more gen-
eral equivalence problem, stated as “Given two gram-
mars G,G’ € G, determine whether L(G) = L(G")”, is co-
r.e.-complete as well, and so is the inclusion problem,
which asks for determining whether L(G) C L(G’). Both
problems are undecidable already for ordinary context-free
grammars. For some subfamilies of ordinary context-free
grammars, equivalence is known to be decidable; its decid-
ability status for unambiguous context-free grammars and
for their linear subclass remains undetermined.

Decidability and complexity of main decision problems
for Boolean grammars and their subfamilies is compared
in Table 2

9. Research directions

9.1. Nine theoretical problems

The previous survey of Boolean grammars [102] intro-
duced nine open problems, each concerned with some the-
oretical property of Boolean grammars. Since then, two
problems have been solved, and seven others remain operﬂ
An award is offered for the first correct solution of each of
the remaining problemsﬂ

The first and the most important problem concerns
the limitations of Boolean grammars. The limitations of
the expressive power of the ordinary context-free gram-
mars are known quite well. Besides the complexity up-
per bounds, there exist direct techniques of proving non-
representability of particular languages, such as the pump-
ing lemma and its variants, as well as Parikh’s theorem,
which show that some computationally very easy lan-
guages cannot be generated by any context-free grammar.
In contrast, no methods of proving non-representability of
languages by Boolean grammars are currently known, and
this is the foremost gap in the knowledge on these gram-
mars. No such methods are known already for conjunctive
grammars.

Of course, the known upper bounds on the complexity
of parsing for Boolean grammars (see Sections and
already imply that all computationally harder languages
are beyond their scope. The question is, whether there

2The current status of these problems is displayed at the
author’s web page, http://users.utu.fi/aleokh/boolean/nine_
open_problems.html.

3In most cases, a solution must be published in a recognized
journal or presented at a recognized conference to qualify for the
award. The award is $360 Canadian per problem, which is equally
distributed between the authors of the solution. If two papers solving
the same question appear simultaneously, the award is split between
them. Each author receives a handwritten certificate and an award
cheque (which may be replaced by another financial instrument).
Every lady among the authors additionally receives a flower.

http://users.utu.fi/aleokh/boolean/nine_open_problems.html
http://users.utu.fi/aleokh/boolean/nine_open_problems.html

Membership Properties of a language

fixed uniform | emptiness equality to Lo € Reg equality inclusion
DFA regular L NL NL NL NL
NFA regular NL NL PSPACE PSPACE PSPACE
LLLinCF in NC! 45 41 L NL inP decidable [137] co-r.e. [98)
DetLinCF L @1 L @1 NL in P decidable [137] co-r.e. [98)
UnambLinCF | in UL [14) in UL NL decidable [127, 30] ? co-r.e. [98)]
LinCF NL [132] NL NL co-r.e. co-r.e. co-T.€.
DIDPDA in NC' p2) in P P [6 67 P P P
NIDPDA in NC' 22 in P P 6, 67 EXP] EXP [EXP [
LLCF in NC% N sC? P P P [29] decidable [I22I17] co-r.e. [27]
DetCF in NC? N SC? [19] P P P 29] decidable [128] co-r.e. [29]
UnambCF in NC? P P decidable [127] ? co-r.e. [29]
CF in NC? [2a,12,125 P P co-r.e. [10, 42 co-r.e. co-r.e. [10]
LinConj P a7, mog) P co-r.e. co-r.e. co-r.e. co-r.e.
UnambConj P P Co-T.e. Co-T.e. co-T.€. co-T.€.
UnambBool P P CO-T.e. CO-T.€. Co-T.€. CO-T.€.
Conj P [1086] P [89) co-r.e. [83] co-r.c. [83] co-r.e. [83] co-r.c. [83]
Bool P 94 P g7 co-T.e. co-T.e. co-T.e. Co-T.€.

Table 2: Decidability and computational complexity of decision problems for formal grammars (an entry “C” indicates completeness for

a complexity class C; “in C” means a problem belonging to C, but not known to be complete for C; “?”

decidability status).

exist any computationally easy languages that cannot be
defined by Boolean grammars, and how can one generally
prove assertions of this kind? The following statement was
designed to rule out trivialized answers based on complex-

ity:

Problem 1. Is there any language recognized by an algo-
rithm working in time O(n?) and using space O(n), which
cannot be defined by a Boolean grammar?

The second problem proposed in the 2006 survey [102]
was concerned with the expressive power of conjunctive
grammars over a one-symbol alphabet, asking whether
they are trivial or not.

Problem 2 (Solved negatively by Jez [49] in 2007).
Do conjunctive grammars over a one-symbol alphabet
generate only reqular languages?

It was suggested in the previous survey, that “If they
can generate any non-reqular language, this would be a
surprise” [102]. The surprise took form of a conjunctive
grammar for the language {a*" | n > 0} [49], given in Ex-
ample [The ideas of that example led to a whole direc-
tion of theoretical research on conjunctive grammars over
a one-symbol alphabet [50L 511 54, 57, [56] [113], presented
in Sections It also had a significant impact on
understanding the power of language equations of a more
general form [52] 53], 55}, 69] [TT], [72]

The next problem asked about the time complexity
of Boolean grammars, whether one can test membership
faster than in cubic time.

31

marks problems with unknown

Problem 3 (Solved positively by Okhotin [I05] in 2009).

Are the languages generated by Boolean grammars con-
tained in deterministic time O(n>=¢), for any e > 07

Though, at the first glance, Valiant’s [I38] algorithm
for ordinary context-free grammars looked as if it essen-
tially uses the encoding of a grammar in a semiring, which
could hardly be achieved for a conjunctive grammar, a
straightforward refactoring, presented in Theorem led
to a simpler variant of Valiant’s algorithm, which is natu-
rally applicable to the general case of Boolean grammars.
Accordingly, the family of languages generated by Boolean
grammars is contained in deterministic time O(n®) with
w < 2.376.

A similar problem about the space complexity of
Boolean grammars still remains open.

Problem 4. Are the languages generated by Boolean
grammars contained in deterministic space O(n'=¢), for
any e >07?

If this were proved for any ¢ > 0, this would, in partic-
ular, separate Boolean grammars from DSPACE(n), and
hence from Chomsky’s “type 1”7 rewriting systems.

The next problem concerns a possible analogue of the
Greibach normal form [34] for Boolean grammars. A
Boolean grammar is in Greibach normal form, if all its
rules are of the form

A= am &...&aoy, &—afi & ... & —afbn, (8)

wherea € ¥, m+n > 1 and oy, 5; € (XUN)*. However, it
is not known whether the family of languages generated by
Boolean grammars in Greibach normal form is the same

as the entire family generated by Boolean grammars. This
is proposed as a research problem:

Problem 5. Is it true that for every Boolean grammar
there exists a Boolean grammar in Greibach normal form
generating the same language?

Though the answer is uncertain, there are some prob-
lems with devising a transformation of a grammar to this
normal form. Consider the language {a"b*" |n > 0}, which
has a linear conjunctive grammar constructed along the
lines of Example but this grammar is definitely not
in Greibach normal form. The only known grammar in
Greibach normal form for this language involves represent-
ing an auxiliary language {b*" | m > 0}, generally as in
Example [4] (the construction is left as an exercise for the
reader). Therefore, if a transformation to the Greibach
normal form exists, then this transformation might have to
discover Example [4] on the basis of Example [I3] which ap-
pears unlikely. If such a transformation exists, then finding
out how to transform Example {is a good starting point.

The family of languages generated by Boolean gram-
mars is closed under all Boolean operations and concate-
nation, simply by virtue of having the corresponding op-
erators as a part of the formalism. However, conjunctive
grammars do not have an explicit negation operator, and
the question of whether negation can still be somehow
expressed—that is, whether for every conjunctive gram-
mar G there exists a grammar for the complement of
L(G)—is open.

Problem 6. Is the family of conjunctive languages closed
under complementation?

If the answer is negative, a possible witness language is
the one from Example [7} the language {ww |w € {a,b}*}
is known to be context-free, while its complement might
be non-representable by conjunctive grammars. The same
problem could be separately considered for conjunctive
languages over a unary alphabet. In fact, for every unary
language found to be conjunctive in the literature, its com-
plement could be proved conjunctive by the same meth-
ods [50, B1], yet there are no methods of transforming a
given conjunctive grammar to a grammar for the comple-
ment of the generated language. One can try approach-
ing this problem by considering whether the complement
of every unambiguous context-free language is necessarily
conjunctive.

The definition of unambiguous Boolean grammars sug-
gests the question of whether there exist any inherently
ambiguous languages with respect to Boolean grammars.

Problem 7. Does there exist a Boolean grammar, which
has no equivalent unambiguous Boolean grammar?

The language {ww|w € {a,b}*} is a possible candidate
for being inherently ambiguous, because the only known
way of representing this language is by putting a negation

32

on top of an ambiguous ordinary context-free grammar, as
in Example [7] Some limitations of unambiguous context-
free grammars were established by Flajolet [26] using the
methods of complex analysis. At the first glance, it ap-
pears that nothing of this kind could be applicable already
to conjunctive grammars, but perhaps there is more to in-
vestigate.

Much more is known about the family of Boolean LL(k)
languages, for which some limitations have already been
established [108], see Theorems What remains
completely unknown, is whether there exists an infinite
hierarchy of languages with respect to the length of looka-
head k.

Problem 8. Does there exist a number kg > 0, such that,
for allk > ko, Boolean LL(k) grammars generate the same
family of languages as Boolean LL(ky) grammars?

To compare, for LL(k) context-free grammars, an infi-
nite hierarchy with respect to k was established by Kurki-
Suonio [64].

The last of the nine problems in the 2006 survey [102]
concerns with the families of languages generated by n-
nonterminal Boolean grammars. The question is, whether
these families form an infinite hierarchy with respect to n,
or does this hierarchy collapse at some point?

Problem 9. Does there exist a number k > 0, such that
every language generated by any Boolean grammar can be
generated by a k-nonterminal Boolean grammar?

For conjunctive grammars, the answer to this ques-
tion is also unknown. To compare, for ordinary context-
free grammars, an infinite hierarchy was established by
Gruska [36], while for linear conjunctive grammars, two
nonterminals are sufficient to represent every linear con-
junctive language (Theorem . Perhaps, some progress
could be made by investigating any limitations of 2-
nonterminal grammars.

Besides the announced theoretical problems, one can
formulate and solve many related questions. For instance,
analogues of Problems (1| (limitations of Boolean gram-
mars), [4| (space complexity), |5 (Greibach normal form),
(LL(k) hierarchy) and [9] (nonterminal hierarchy) can be
stated for conjunctive grammars or for unambiguous con-
junctive grammars. A variant of Problem (time complex-
ity) for unambiguous Boolean grammars would ask about
parsing in time O(n?¢): the answer is unknown already
for unambiguous linear context-free grammars. Problem [6]
(complementation) is no less interesting for unambiguous
conjunctive grammars. All the same questions could be
studied for grammars restricted to a one-symbol alphabet.
In relation to Problem (space complexity), one could con-
sider at least separating unambiguous conjunctive gram-
mars from NSPACE(n).

9.2. Further topics

Besides solving specific theoretical problems about for-
mal grammars, one can consider many possible directions
for general investigation.

For instance, one can try to obtain an attractive sub-
class of Boolean grammars, which would preserve their es-
sential expressive power, and at the same time allow more
efficient parsing than in the general case. What of the ex-
pressive power of Boolean grammars should be regarded as
essential? Of what is known, the most useful is, perhaps,
the ability to compare identifiers, demonstrated in Exam-
ple[2] and the ability to check declaration before use, as in
Example 3] If one could find a subclass of Boolean gram-
mars, that is still able to generate these two languages, and
which would have a parsing method with a running time
o(n?), perhaps nlogo(l) n, then this would make a signifi-
cant step towards the practical use of Boolean grammars.
This is mostly a matter of finding an entirely new efficient
parsing algorithm; once such an algorithm is discovered,
it may redefine the understanding of what is essential in
Boolean grammars.

Thinking in the opposite direction, perhaps it could
be possible to invent a meaningful superclass of con-
junctive or Boolean grammars, which would add some use-
ful expressive means, and yet maintain the crucial prop-
erties of context-free grammars. Defining the properties
of strings in some sense inductively on the length of the
strings is proposed as a necessary condition of meaning-
fulness. The crucial important properties include, for in-
stance, the existence of an analogue of the Cocke-Kasami-
Younger algorithm, running in polynomial time. If such an
algorithm exists, there is a chance that the resulting gram-
mars inherit some other good properties; in particular, a
few other parsing algorithms. An effort in that direction
has recently been made by Barash and Okhotin [9], who
extended conjunctive grammars with quantifiers for spec-
ifying contexts.

Besides looking for logically different models, one can
consider a stochastic variant of the very same conjunc-
tive and Boolean grammars. The general way of defining
such a variant was already set by Esik and Kuich [24],
who developed related ideas in the context of least fix-
points of systems of language equations. Though Esik
and Kuich [24] restricted the underlying model of val-
ues assigned to strings to Boolean algebras, exactly the
same approach should work for probabilities, and generally
for semirings. Recently, Zier-Vogel and Domaratzki [145]
defined stochastic conjunctive grammars and used them,
along with the appropriately extended cubic-time parsing
algorithm, to detect pseudo-knots in RNA. With these pio-
neering studies carried out, much work remains to be done
in order to develop a conclusive theory of stochastic con-
junctive and Boolean grammars. In particular, one would
have to investigate learning algorithms for these families.

Another proposed subject of research is implementa-
tion of conjunctive and Boolean grammars. The goal is to

33

produce a software tool to handle these grammars, which
could be used by practitioners for parsing data in their
programs. The parsing algorithms have been defined and
theoretically analyzed, so it remains to adapt them to the
needs of the users, to invent an appropriate input notation
and internal representation of data and methods, and fi-
nally to develop the actual software. So far there have been
a purely academic implementation of basic algorithms by
the author [86], a GPU implementation of parsing by ma-
trix multiplication by Okhotin and Reitwiefiner [IT1], and
a Java-based GLR parser generator by Megacz [79].

And perhaps the most important direction for general
investigation is identifying applications for conjunctive
and Boolean grammars. This is a sphere of action for
experts in applied areas, such as linguistics, software en-
gineering or bioinformatics. The mathematical theory of
formal grammars has now been developed towards a more
expressive logic, which can still be conveniently and effi-
ciently implemented. It is up to these experts to find ways
of using this new theory, and thus motivate future research
on formal grammars by more than a pure mathematical
interest.

References
(1]
(2]

A. V. Aho, R. Sethi, J. D. Ullman, Compilers: principles,
techniques and tools, Addison-Wesley, Reading, Mass., 1986.
T. Aizikowitz, M. Kaminski, “Conjunctive grammars and al-
ternating pushdown automata”}, Acta Informatica, 50:3 (2013),
175-197.

T. Aizikowitz, M. Kaminski, “Linear conjunctive grammars
and one-turn synchronized alternating pushdown automata”,
Formal Grammar (Bordeaux, France, July 25-26, 2009), LNAI
5591, 1-16.

T. Aizikowitz, M. Kaminski, |“LR(0) conjunctive grammars
and deterministic synchronized alternating pushdown au-
tomata”, Computer Science in Russia (CSR 2011, St. Peters-
burg, Russia, 14-18 June 2011), LNCS 6651, 345-358.

N. Alon, M. Naor, |“Derandomization, witnesses for Boolean
matrix multiplication and construction of perfect hash func-
tions”| Algorithmica, 16:4-5 (1996), 434-449.

R. Alur, P. Madhusudan, “Visibly pushdown languages”, ACM
Symposium on Theory of Computing (STOC 2004, Chicago,
USA, 13-16 June 2004), 202-211.

V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, I. A. Faradzhev,
“On economical construction of the transitive closure of an ori-
ented graph”, Soviet Mathematics Doklady, 11 (1970), 1209—
1210.

R. Balzer, “An 8-state minimal time solution to the firing
squad synchronization problem”, Information and Control,
10:1 (1967), 22-42.

M. Barash, A. Okhotin, “Defining contexts in context-free
grammars”, Language and Automata Theory and Applications
(LATA 2012, A Corufia, Spain, 5-9 March 2012), LNCS 7183,
106-118.

Y. Bar-Hillel, M. Perles, E. Shamir, “On formal proper-
ties of simple phrase-structure grammars”, Zeitschrift fir
Phonetik, Sprachwissenschaft und Kommunikationsforschung,
14 (1961), 143-177.

B. von Braunmiihl, R. Verbeek, “Input driven languages are
recognized in logn space”, Annals of Discrete Mathematics,
24 (1985), 1-20.

R. P. Brent, L. M. Goldschlager, “A parallel algorithm for
context-free parsing”, Australian Computer Science Commu-
nications, 6:7 (1984), 7.1-7.10.

(3]

(4]

(5]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

http://dx.doi.org/10.1007/s00236-013-0177-3
http://dx.doi.org/10.1007/s00236-013-0177-3
http://dx.doi.org/10.1007/978-3-540-69937-8_6
http://dx.doi.org/10.1007/978-3-540-69937-8_6
http://dx.doi.org/10.1007/978-3-642-20712-9_27
http://dx.doi.org/10.1007/978-3-642-20712-9_27
http://dx.doi.org/10.1007/978-3-642-20712-9_27
http://dx.doi.org/10.1007/BF01940874
http://dx.doi.org/10.1007/BF01940874
http://dx.doi.org/10.1007/BF01940874
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1016/S0019-9958(67)90032-0
http://dx.doi.org/10.1016/S0019-9958(67)90032-0
http://dx.doi.org/10.1007/978-3-642-28332-1_10
http://dx.doi.org/10.1007/978-3-642-28332-1_10
http://dx.doi.org/10.1016/S0304-0208(08)73072-X
http://dx.doi.org/10.1016/S0304-0208(08)73072-X

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]
(22]
(23]
(24]

(23]

[26]

27]
(28]
[29]
(30]
(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

T. Buchholz, M. Kutrib, “On time computability of functions
in one-way cellular automata”, Acta Informatica, 35:4 (1998),
329-352.

G. Buntrock, B. Jenner, K.-J. Lange, P. Rossmanith, “Unam-
biguity and fewness for logarithmic space”, Fundamentals of
Computation Theory (FCT 1991, Gosen, Germany, September
9-13, 1991), LNCS 529, 168-179.

N. Chomsky, “On certain formal properties of grammars”, In-
formation and Control, 2:2 (1959), 137-167.

S. A. Cook, “Deterministic CFL’s are accepted simultaneously
in polynomial time and log squared space”| 11th Annual ACM
Symposium on Theory of Computing (STOC 1979, April 30—
May 2, 1979, Atlanta, Georgia, USA), 338-345.

D. Coppersmith, S. Winograd, “Matrix multiplication via
arithmetic progressions”, Journal of Symbolic Computation,
9:3 (1990), 251-280.

K. Culik II, |“Variations of the firing squad problem and ap-
plications”, Information Processing Letters, 30:3 (1989), 152—
157.

K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata”,
I and II, International Journal of Computer Mathematics, 15
(1984), 195-212, and 16 (1984), 3-22.

K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automataz:
stability, decidability and complexity”, Information and Con-
trol, 71 (1986) 218-230.

C. Dyer, “One-way bounded cellular automata”, Information
and Control, 44:3 (1980), 261-281.

P. W. Dymond, “Input-driven languages are in logn depth”)
Information Processing Letters, 26 (1988), 247—250.

J. Earley, “An efficient context-free parsing algorithm”, Com-
munications of the ACM, 13:2 (1970), 94-102.

Z. Esik7 W. Kuich, “Boolean fuzzy sets”, International Journal
of Foundations of Computer Science, 18:6 (2007), 1197-1207.
M. J. Fischer, L. J. Stockmeyer, “Fast on-line integer mul-
tiplication”, Journal of Computer and System Sciences, 9:3
(1974), 317-331.

Ph. Flajolet, “Analytic models and ambiguity of context-free
languages”, Theoretical Computer Science, 49 (1987), 283—
309.

E. P. Friedman, “The inclusion problem for simple languages”)
Theoretical Computer Science, 1:4 (1976), 297-316.

M. Fiirer, “Faster integer multiplication”, SIAM Journal on
Computing, 39:3 (2009), 979-1005.

S. Ginsburg, S. A. Greibach, “Deterministic context-free lan-
guages”, Information and Control, 9:6 (1966), 620—648.

S. Ginsburg, H. G. Rice, “T'wo families of languages related to
ALGOL”| Journal of the ACM, 9 (1962), 350-371.

S. Ginsburg, G. Rose, “Operations which preserve definability
in languages”| Journal of the ACM, 10:2 (1963), 175-195.

S. Ginsburg, J. Ullian, “Preservation of unambiguity and in-
herent ambiguity in context-free languages”, Journal of the
ACM, 13:3 (1966), 364-368.

S. L. Graham, M. A. Harrison, W. L. Ruzzo, “An improved
context-free recognizer”, ACM Transactions of Programming
Languages and Systems, 2:3 (1980), 415-462.

S. A. Greibach, “A new normal-form theorem for context-free
phrase structure grammars”, Journal of the ACM, 12 (1965),
42-52.

S. A. Greibach, |“The hardest context-free language”, SIAM
Journal on Computing, 2:4 (1973), 304-310.

J. Gruska, “Descriptional complexity of context-free lan-
guages”, Mathematical Foundations of Computer Science
(MFCS 1973, Strbské Pleso, High Tatras, Czechoslovakia, 3-8
September 1973), 71-83.

M. A. Harrison, Introduction to Formal Language Theory,
Addison-Wesley, 1978.

J. Hartmanis, “Context-free languages and Turing machine
computations”, Proceedings of Symposia in Applied Mathe-
matics, Vol. 19, AMS, 1967, 42-51.

S. Heilbrunner, L. Schmitz, “An efficient recognizer for the
Boolean closure of context-free languages”, Theoretical Com-

34

(40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

(53]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

puter Science, 80 (1991), 53-75.

T. N. Hibbard, J. Ullian, “The independence of inherent ambi-
guity from complementedness among context-free languages”,
Journal of the ACM, 13:4 (1966), 588—593.

M. Holzer, K.-J. Lange, “On the complexities of linear LL(1)
and LR(1) grammars”, Fundamentals of Computation Theory
(FCT 1993, Hungary, August 23-27, 1993), LNCS 710, 299—
308.

J. E. Hopcroft, “On the equivalence and containment problems
for context-free languages”, Theory of Computing Systems, 3:2
(1969), 119-124.

J. E. Hopcroft, J. D. Ullman, Introduction to Automata The-
ory, Languages and Computation, Addison-Wesley, 1979.

D. T. Huynh, “Commutative grammars: the complexity of uni-
form word problems”| Information and Control, 57:1 (1983),
21-39.

O. H. Ibarra, T. Jiang, B. Ravikumar, “Some subclasses of
context-free languages in NC1”| Information Processing Let-
ters, 29:3 (1988), 111-117.

O. H. Ibarra, T. Jiang, H. Wang, “A characterization of
exponential-time languages by alternating context-free gram-
mars”|, Theoretical Computer Science, 99:2 (1992), 301-313.
O. H. Ibarra, S. M. Kim, “Characterizations and computa-
tional complexity of systolic trellis automata”, Theoretical
Computer Science, 29 (1984), 123-153.

N. Immerman, “Relational queries computable in polynomial
time”| Information and Control, 68:1-3 (1986), 86—104.

A. Jez, “Conjunctive grammars can generate non-regular
unary languages”, International Journal of Foundations of
Computer Science, 19:3 (2008), 597-615.

A. Jez, A. Okhotin, |“Conjunctive grammars over a unary al-
phabet: undecidability and unbounded growth”, Theory of
Computing Systems, 46:1 (2010), 27-58.

A. Jez, A. Okhotin, “Complexity of equations over sets of nat-
ural numbers”, Theory of Computing Systems, 48:2 (2011),
319-342.

A. Jez, A. Okhotin, |“On the computational completeness
of equations over sets of natural numbers”, 35th Interna-
tional Colloguium on Automata, Languages and Programming
(ICALP 2008, Reykjavik, Iceland, July 7-11, 2008), 63-74.
A. Jez, A. Okhotin, “Equations over sets of natural numbers
with addition only”, STACS 2009 (Freiburg, Germany, 26-28
February, 2009), 577-588.

A. Jez, A. Okhotin, “One-nonterminal conjunctive grammars
over a unary alphabet”, Theory of Computing Systems, 49:2
(2011), 319-342.

A. Jez, A. Okhotin, “Representing hyper-arithmetical sets by
equations over sets of integers”, Theory of Computing Systems,
51:2 (2012), 196-228.

A. Jez, A. Okhotin, “On the number of nonterminal symbols in
unambiguous conjunctive grammars”, Descriptional Complex-
ity of Formal Systems (DCFS 2012, Braga, Portugal, 23-25
July 2012), LNCS 7386, 183-195.

A. Jez, A. Okhotin, “Unambiguous conjunctive grammars
over a one-letter alphabet”, Developments in Language The-
ory (DLT 2013, Paris, France, 18-21 June 2013), LNCS 7907,
to appear.

A. K. Joshi, L. S. Levy, M. Takahashi, |“Tree adjunct gram-
mars”|, Journal of Computer and System Sciences, 10:1 (1975),
136-163.

T. Kasami, “An efficient recognition and syntax-analysis al-
gorithm for context-free languages”, Report AF CRL-65-758,
Air Force Cambridge Research Laboratory, USA, 1965.

T. Kasami, K. Torii, |“A syntax-analysis procedure for unam-
biguous context-free grammars”, Journal of the ACM, 16:3
(1969), 423-431.

D. E. Knuth, “On the translation of languages from left to
right”|, Information and Control, 8:6 (1965), 607-639.

V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, |“Well-
founded semantics for Boolean grammars”, Information and
Computation, 207:9 (2009), 945-967.

http://dx.doi.org/10.1007/s002360050123
http://dx.doi.org/10.1007/s002360050123
http://dx.doi.org/10.1007/3-540-54458-5_61
http://dx.doi.org/10.1007/3-540-54458-5_61
http://dx.doi.org/10.1016/S0019-9958(59)90362-6
http://dx.doi.org/10.1145/800135.804426
http://dx.doi.org/10.1145/800135.804426
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/0020-0190(89)90134-8
http://dx.doi.org/10.1016/0020-0190(89)90134-8
http://dx.doi.org/10.1016/S0019-9958(80)90164-3
http://dx.doi.org/10.1016/0020-0190(88)90148-2
http://dx.doi.org/10.1145/362007.362035
http://dx.doi.org/10.1142/S0129054107005248
http://dx.doi.org/10.1016/S0022-0000(74)80047-4
http://dx.doi.org/10.1016/S0022-0000(74)80047-4
http://dx.doi.org/10.1016/0304-3975(87)90011-9
http://dx.doi.org/10.1016/0304-3975(87)90011-9
http://dx.doi.org/10.1016/0304-3975(76)90074-8
http://dx.doi.org/10.1137/070711761
http://dx.doi.org/10.1016/S0019-9958(66)80019-0
http://dx.doi.org/10.1016/S0019-9958(66)80019-0
http://dx.doi.org/10.1145/321127.321132
http://dx.doi.org/10.1145/321127.321132
http://doi.acm.org/10.1145/321160.321167
http://doi.acm.org/10.1145/321160.321167
http://dx.doi.org/10.1145/321341.321345
http://dx.doi.org/10.1145/321341.321345
http://dx.doi.org/10.1145/357103.357112
http://dx.doi.org/10.1145/357103.357112
http://dx.doi.org/10.1145/321250.321254
http://dx.doi.org/10.1145/321250.321254
http://dx.doi.org/10.1137/0202025
http://dx.doi.org/10.1016/0304-3975(91)90205-G
http://dx.doi.org/10.1016/0304-3975(91)90205-G
http://dx.doi.org/10.1145/321356.321366
http://dx.doi.org/10.1145/321356.321366
http://dx.doi.org/10.1007/3-540-57163-9_25
http://dx.doi.org/10.1007/3-540-57163-9_25
http://dx.doi.org/10.1007/BF01746517
http://dx.doi.org/10.1007/BF01746517
http://dx.doi.org/10.1016/S0019-9958(83)80022-9
http://dx.doi.org/10.1016/S0019-9958(83)80022-9
http://dx.doi.org/10.1016/0020-0190(88)90047-6
http://dx.doi.org/10.1016/0020-0190(88)90047-6
http://dx.doi.org/10.1016/0304-3975(92)90355-J
http://dx.doi.org/10.1016/0304-3975(92)90355-J
http://dx.doi.org/10.1016/0304-3975(92)90355-J
http://dx.doi.org/10.1016/0304-3975(84)90015-X
http://dx.doi.org/10.1016/0304-3975(84)90015-X
http://dx.doi.org/10.1016/S0019-9958(86)80029-8
http://dx.doi.org/10.1016/S0019-9958(86)80029-8
http://dx.doi.org/10.1142/S012905410800584X
http://dx.doi.org/10.1142/S012905410800584X
http://dx.doi.org/10.1007/s00224-008-9139-5
http://dx.doi.org/10.1007/s00224-008-9139-5
http://dx.doi.org/10.1007/s00224-009-9246-y
http://dx.doi.org/10.1007/s00224-009-9246-y
http://dx.doi.org/10.1007/978-3-540-70583-3_6
http://dx.doi.org/10.1007/978-3-540-70583-3_6
http://drops.dagstuhl.de/opus/volltexte/2009/1806
http://drops.dagstuhl.de/opus/volltexte/2009/1806
http://dx.doi.org/10.1007/s00224-011-9319-6
http://dx.doi.org/10.1007/s00224-011-9319-6
http://dx.doi.org/10.1007/s00224-011-9352-5
http://dx.doi.org/10.1007/s00224-011-9352-5
http://dx.doi.org/10.1007/978-3-642-31623-4_14
http://dx.doi.org/10.1007/978-3-642-31623-4_14
http://dx.doi.org/10.1016/S0022-0000(75)80019-5
http://dx.doi.org/10.1016/S0022-0000(75)80019-5
http://dx.doi.org/10.1145/321526.321531
http://dx.doi.org/10.1145/321526.321531
http://dx.doi.org/10.1016/S0019-9958(65)90426-2
http://dx.doi.org/10.1016/S0019-9958(65)90426-2
http://dx.doi.org/10.1016/j.ic.2009.05.002
http://dx.doi.org/10.1016/j.ic.2009.05.002

(63]

(64]

[65]

[66]

[67]

(68]

(69]

[70]

(71]

[72]

(73]

[74]
[75]

[76]

[77]
(78]

[79]

(80]

(81]

(82]

(83]
(84]
(85]

(86]

V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, “A game-
theoretic characterization of Boolean grammars”, Theoretical
Computer Science, 412:12-14 (2011), 1169-1183.

R. Kurki-Suonio, “Notes on top-down languages”, BIT Nu-
merical Mathematics, 9 (1969), 225-238.

B. Lang, |“Deterministic techniques for efficient non-
deterministic parsers”, Automata, Languages and Program-
ming (ICALP 1974, Saarbriicken, July 29-August 2, 1974),
LNCS 14, 255-269.

M. Lange, “Alternating context-free languages and linear time
p-calculus with sequential composition”, Electronic Notes on
Theoretical Computer Science, 68:2 (2002), 70-86.

M. Lange, “P-hardness of the emptiness problem for visibly
pushdown languages”|, Information Processing Letters, 111:7
(2011), 338-341.

M. Latta, R. Wall, “Intersective context-free languages”,
Lenguajes Naturales y Lenguajes Formales IX, Barcelona,
1993, 15-43.

T. Lehtinen, |“On equations X+A = B and (X+X)+C = (X—
X) + D over sets of numbers”, Mathematical Foundations of
Computer Science (MFCS 2012, Bratislava, Slovakia, August
26-31 2012), LNCS 7464, 615-629.

T. Lehtinen, A. Okhotin, “Boolean grammars and GSM map-
pings”, International Journal of Foundations of Computer
Science, 21:5 (2010), 799-815.

T. Lehtinen, A. Okhotin, “On equations over sets of numbers
and their limitations”, International Journal of Foundations
of Computer Science, 22:2 (2011), 377-393.

T. Lehtinen, A. Okhotin, “On language equations X XK =
XXL and XM = N over a unary alphabet”, Developments
in Language Theory (DLT 2010, London, Ontario, Canada,
17-20 August 2010), LNCS 6224, 291-302.

T. Lehtinen, A. Okhotin, |“Homomorphisms preserving deter-
ministic context-free languages”, Developments in Language
Theory (DLT 2012, Taipei, Taiwan, 14-17 August 2012),
LNCS 7410, 154-165.

E. L. Leiss, | “Unrestricted complementation in language equa-
tions over a one-letter alphabet”, Theoretical Computer Sci-
ence, 132 (1994), 71-93.

P. M. Lewis I, R. E. Stearns, “Syntax-directed transduction”
Journal of the ACM, 15:3 (1968), 465—488.

P. M. Lewis II, R. E. Stearns, J. Hartmanis, “Memory
bounds for recognition of context-free and context-sensitive
languages”, IEEE Conference Record on Switching Circuit
Theory and Logical Design, 191-202, 1965.

A. N. Maslov, “Estimates of the number of states of finite au-
tomata”, Soviet Mathematics Doklady, 11 (1970), 1373-1375.
A. N. Maslov, “Cyclic shift operation for languages”, Problems
of Information Transmission, 9 (1973), 333-338.

A. Megacz, “Scannerless Boolean parsing”, LDTA 2006, Elec-
tronic Notes in Theoretical Computer Science, 164:2 (2006),
97-102.

K. Mehlhorn, “Pebbling mountain ranges and its application to
DCFL-recognition”, Automata, Languages and Programming
(ICALP 1980, Noordweijkerhout, The Netherlands, 14-18 July
1980), LNCS 85, 422-435.

E. Moriya, “A grammatical characterization of alternating
pushdown automata”, Theoretical Computer Science, 67:1
(1989), 75-85.

Ch. Nomikos, P. Rondogiannis, “Locally stratified Boolean
grammars”, Information and Computation, 206:9-10 (2008),
1219-1233.

A. Okhotin, “Conjunctive grammars”, Journal of Automata,
Languages and Combinatorics, 6:4 (2001), 519-535.

A. Okhotin, “Top-down parsing of conjunctive languages”|
Grammars, 5:1 (2002), 21-40.

A. Okhotin, “LR parsing for conjunctive grammars”, Gram-
mars, 5:2 (2002), 81-124.

A. Okhotin, “Whale Calf, a parser generator for conjunc-
tive grammars”, Implementation and Application of Automata
(CIAA 2002, Tours, France, July 3-5, 2002), LNCS 2608, 213—

35

(87]

(88]

(89]

[90]

[91]

(92]

(93]

[94]
[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

220.

A. Okhotin, “Conjunctive grammars and systems of lan-
guage equations”, Programming and Computer Software, 28:5
(2002), 243-249.

A. Okhotin, “On the closure properties of linear conjunctive
languages”, Theoretical Computer Science, 299 (2003), 663—
685.

A. Okhotin, “A recognition and parsing algorithm for arbi-
trary conjunctive grammars”, Theoretical Computer Science,
302 (2003), 365-399.

A. Okhotin, |“The hardest linear conjunctive language”| Infor-
mation Processing Letters, 86:5 (2003), 247-253.

A. Okhotin, “Efficient automaton-based recognition for linear
conjunctive languages”, International Journal of Foundations
of Computer Science, 14:6 (2003), 1103-1116.

A. Okhotin, “On the equivalence of linear conjunctive gram-
mars to trellis automata”, RAIRO Informatique Théorique et
Applications, 38:1 (2004), 69-88.

A. Okhotin, “On the number of nonterminals in linear con-
junctive grammars”, Theoretical Computer Science, 320:2—3
(2004), 419-448.

A. Okhotin, |“Boolean grammars”, Information and Computa-
tion, 194:1 (2004), 19-48.

A. Okhotin, “The dual of concatenation”, Theoretical Com-
puter Science, 345:2-3 (2005), 425-447.

A. Okhotin, “On the existence of a Boolean grammar for a sim-
ple programming language”, Proceedings of AFL 2005 (May
17-20, 2005, Dobogékd, Hungary).

A. Okhotin, “Generalized LR parsing algorithm for Boolean
grammars”’, International Journal of Foundations of Com-
puter Science, 17:3 (2006), 629-664.

A. Okhotin, “Language equations with symmetric difference”}
Fundamenta Informaticae, 116:1-4 (2012), 205-222.

A. Okhotin, “Homomorphisms preserving linear conjunctive
languages”, Journal of Automata, Languages and Combina-
torics, 13:3-4 (2008), 299-305.

A. Okhotin, “Seven families of language equations”,
toMathA 2007, Palermo, Italy, June 18-22, 2007.

A. Okhotin, “Recursive descent parsing for Boolean gram-
mars”|, Acta Informatica, 44:3-4 (2007), 167-189.

A. Okhotin, “Nine open problems for conjunctive and Boolean
grammars”, Bulletin of the EATCS, 91 (2007), 96-119.

A. Okhotin, |“Unambiguous Boolean grammars”, Information
and Computation, 206 (2008), 1234-1247.

A. Okhotin, “Decision problems for language equations”, Jour-
nal of Computer and System Sciences, 76:3—4 (2010), 251-266.
A. Okhotin, |“Fast parsing for Boolean grammars: a gener-
alization of Valiant’s algorithm”, Dewvelopments in Language
Theory (DLT 2010, London, Ontario, Canada, August 17-20,
2010), LNCS 6224, 340-351.

A. Okhotin, “A simple P-complete problem and its language-
theoretic representations”, Theoretical Computer Science,
412:1-2 (2011), 68-82.

A. Okhotin, “Comparing linear conjunctive languages to sub-
families of the context-free languages”, SOFSEM 2011: The-
ory and Practice of Computer Science (Novy Smokovec, Slo-
vakia, 22-28 January 2011), LNCS 6543, 431-443.

A. Okhotin, “Expressive power of LL(k) Boolean grammars”,
Theoretical Computer Science, 412:39 (2011), 5132-5155.

A. Okhotin, “Inverse homomorphic characterizations of con-
junctive and Boolean grammars”, TUCS Technical Report
1080, Turku Centre for Computer Science, May 2013.

A. Okhotin, C. Reitwiener, “Conjunctive grammars with re-
stricted disjunction”, Theoretical Computer Science, 411:26—
28 (2010), 2559-2571.

A. Okhotin, C. Reitwiefiner, “Parsing by matrix multiplica-
tion implemented on a CPU-GPU system”, manuscript, April
2010.

A. Okhotin, C. Reitwiefiner, “Parsing Boolean grammars over
a one-letter alphabet using online convolution”, Theoretical
Computer Science, 457 (2012), 149-157.

Au-

http://dx.doi.org/10.1016/j.tcs.2010.12.051
http://dx.doi.org/10.1016/j.tcs.2010.12.051
http://dx.doi.org/10.1007/BF01946814
http://dx.doi.org/10.1007/3-540-06841-4_65
http://dx.doi.org/10.1007/3-540-06841-4_65
http://dx.doi.org/10.1016/j.ipl.2010.12.013
http://dx.doi.org/10.1016/j.ipl.2010.12.013
http://dx.doi.org/10.1007/978-3-642-32589-2_54
http://dx.doi.org/10.1007/978-3-642-32589-2_54
http://dx.doi.org/10.1142/S0129054110007568
http://dx.doi.org/10.1142/S0129054110007568
http://dx.doi.org/10.1142/S012905411100809X
http://dx.doi.org/10.1142/S012905411100809X
http://dx.doi.org/10.1007/978-3-642-14455-4_27
http://dx.doi.org/10.1007/978-3-642-14455-4_27
http://dx.doi.org/10.1007/978-3-642-31653-1_15
http://dx.doi.org/10.1007/978-3-642-31653-1_15
http://dx.doi.org/10.1016/0304-3975(94)90227-5
http://dx.doi.org/10.1016/0304-3975(94)90227-5
http://dx.doi.org/10.1145/321466.321477
http://dx.doi.org/10.1109/FOCS.1965.14
http://dx.doi.org/10.1109/FOCS.1965.14
http://dx.doi.org/10.1109/FOCS.1965.14
http://dx.doi.org/10.1016/j.entcs.2006.10.007
http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1016/0304-3975(89)90023-6
http://dx.doi.org/10.1016/0304-3975(89)90023-6
http://dx.doi.org/10.1016/j.ic.2008.03.022
http://dx.doi.org/10.1016/j.ic.2008.03.022
http://dx.doi.org/10.1023/A:1014219530875
http://dx.doi.org/10.1023/A:1016329527130
http://dx.doi.org/10.1023/A:1020213411126
http://dx.doi.org/10.1023/A:1020213411126
http://dx.doi.org/10.1016/S0304-3975(02)00543-1
http://dx.doi.org/10.1016/S0304-3975(02)00543-1
http://dx.doi.org/10.1016/S0304-3975(02)00853-8
http://dx.doi.org/10.1016/S0304-3975(02)00853-8
http://dx.doi.org/10.1016/S0020-0190(02)00511-2
http://dx.doi.org/10.1142/S0129054103002205
http://dx.doi.org/10.1142/S0129054103002205
http://dx.doi.org/10.1051/ita:2004004
http://dx.doi.org/10.1051/ita:2004004
http://dx.doi.org/10.1016/j.tcs.2004.03.002
http://dx.doi.org/10.1016/j.tcs.2004.03.002
http://dx.doi.org/10.1016/j.ic.2004.03.006
http://dx.doi.org/10.1016/j.tcs.2005.07.019
http://dx.doi.org/10.1142/S0129054106004029
http://dx.doi.org/10.1142/S0129054106004029
http://dx.doi.org/10.3233/FI-2012-679
http://dx.doi.org/10.1007/s00236-007-0045-0
http://dx.doi.org/10.1007/s00236-007-0045-0
http://dx.doi.org/10.1016/j.ic.2008.03.023
http://dx.doi.org/10.1016/j.jcss.2009.08.002
http://dx.doi.org/10.1007/978-3-642-14455-4_31
http://dx.doi.org/10.1007/978-3-642-14455-4_31
http://dx.doi.org/10.1016/j.tcs.2010.09.015
http://dx.doi.org/10.1016/j.tcs.2010.09.015
http://dx.doi.org/10.1007/978-3-642-18381-2_36
http://dx.doi.org/10.1007/978-3-642-18381-2_36
http://dx.doi.org/10.1016/j.tcs.2011.05.013
http://tucs.fi/publications/view/?pub_id=tOkhotin_Alexander13a
http://tucs.fi/publications/view/?pub_id=tOkhotin_Alexander13a
http://dx.doi.org/10.1016/j.tcs.2010.03.015
http://dx.doi.org/10.1016/j.tcs.2010.03.015
http://dx.doi.org/10.1016/j.tcs.2012.06.032
http://dx.doi.org/10.1016/j.tcs.2012.06.032

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]
[130]

[131]

[132]

[133]

(134]
[135]
[136]

[137]

[138]

A. Okhotin, P. Rondogiannis, |“On the expressive power of uni-
variate equations over sets of natural numbers”, Information
and Computation, 212 (2012), 1-14.

A. Okhotin, K. Salomaa, “State complexity of operations on
input-driven pushdown automata”, Mathematical Foundations
of Computer Science (MFCS 2011, Warsaw, Poland, 22-26
August 2011), LNCS 6907, 485-496.

A. Okhotin, O. Yakimova, “Language equations with com-
plementation: Decision problems”, Theoretical Computer Sci-
ence, 376:1-2 (2007), 112-126.

A. Okhotin, O. Yakimova, “Language equations with comple-
mentation: Expressive power”, Theoretical Computer Science,
416 (2012), 71-86.

T. Olshansky, A. Pnueli, “A direct algorithm for checking
equivalence of LL(k) grammars”| Theoretical Computer Sci-
ence, 4:3 (1977), 321-349.

T. Oshiba, “Closure property of the family of context-free
languages under the cyclic shift operation”, Transactions of
IECE, 55D (1972), 119-122.

A. J. Perlis, K. Samelson, ‘‘Preliminary report: interna-
tional algebraic language”, Communications of the ACM 1:12
(1958), 8-22.

W. Plandowski, W. Rytter, “Complexity of language recogni-
tion problems for compressed words”, in: J. Karhumaki, H. A.
Maurer, G. Piun, G. Rozenberg (Eds.), Jewels are Forever,
Springer, 1999, 262-272.

A. Reed, B. Kellogg, Higher Lessons in English, revised edi-
tion, 1896.

D. J. Rosenkrantz, R. E. Stearns, “Properties of determinis-
tic top-down grammars”, Information and Control, 17 (1970),
226-256.

W. C. Rounds, “LFP: A logic for linguistic descriptions and
an analysis of its complexity”, Computational Linguistics, 14:4
(1988), 1-9.

W. L. Ruzzo, “On uniform circuit complexity”, Journal of
Computer and System Sciences, 22:3 (1981), 365-383.

W. Rytter, |“On the recognition of context-free languages”)
Fundamentals of Computation Theory (FCT 1985, Cottbus,
Germany), LNCS 208, 315-322.

S. Scheinberg, “Note on the boolean properties of context free
languages”, Information and Control, 3 (1960), 372-375.

A. L. Semenov, “Algorithmic problems for power series and
for context-free grammars”, Doklady Akademii Nauk SSSR,
212 (1973), 50-52.

G. Sénizergues, “L(A) = L(B)? decidability results from com-
plete formal systems”| Theoretical Computer Science, 251:1-2
(2001), 1-166.

K. Sikkel, Parsing Schemata, Springer-Verlag, 1997.

R. E. Stearns, H. B. Hunt III,|“On the equivalence and contain-
ment problems for unambiguous regular expressions, regular
grammars and finite automata”’, SIAM Journal on Comput-
ing, 14 (1985), 598—611.

V. Strassen, “Gaussian elimination is not optimal”,
merische Mathematik, 13 (1969), 354-356.

I. H. Sudborough, “A note on tape-bounded complexity classes
and linear context-free languages”, Journal of the ACM, 22:4
(1975), 499-500.

A. Szabari, Alternujice Zdsobnikové Automaty (Alternating
Pushdown Automata), in Slovak, diploma work (M.Sc. thesis),
University of Kosice (Czechoslovakia), 1991, 45 pp.

V. Terrier, “On real-time one-way cellular array”, Theoretical
Computer Science, 141:1-2 (1995), 331-335.

V. Terrier, “Closure properties of cellular automata”, Theoret-
ical Computer Science, 352:1-3 (2006), 97-107.

M. Tomita, “An efficient augmented context-free parsing algo-
rithm”, Computational Linguistics, 13:1 (1987), 31-46.

L. G. Valiant, “The equivalence problem for deterministic
finite-turn pushdown automata”, Information and Control,
25:2 (1974), 123-133.

L. G. Valiant, “General context-free recognition in less than
cubic time”, Journal of Computer and System Sciences, 10:2

Nu-

36

[139]

[140]

[141]

[142]

[143]

[144]

[145]

(1975), 308-314.

M. Y. Vardi, “The complexity of relational query languages”,
STOC 1982, 137-146.

D. Wood, |“A further note on top-down deterministic lan-
guages”, Computer Journal, 14:4 (1971), 396-403.

D. Wotschke, “The Boolean closures of deterministic and non-
deterministic context-free languages”, In: W. Brauer (ed.),
Gesellschaft fir Informatik e. V., 3. Jahrestagung 1973, LNCS
1, 113-121.

M. Wrona, “Stratified Boolean grammars”, Mathematical
Foundations of Computer Science (MFCS 2005, Gdansk,
Poland, August 29-September 2, 2005), LNCS 3618, 801-812.
D. H. Younger, “Recognition and parsing of context-free lan-
guages in time n3”, Information and Control, 10 (1967), 189
208.

S. Yu, “A property of real-time trellis automata”’, Discrete
Applied Mathematics, 15:1 (1986), 117-119.

R. Zier-Vogel, M. Domaratzki, “RNA pseudoknot prediction
through stochastic conjunctive grammars”, CiE 2013, to ap-
pear.

http://dx.doi.org/10.1016/j.ic.2012.01.004
http://dx.doi.org/10.1016/j.ic.2012.01.004
http://dx.doi.org/10.1007/978-3-642-22993-0_44
http://dx.doi.org/10.1007/978-3-642-22993-0_44
http://dx.doi.org/10.1016/j.tcs.2007.01.016
http://dx.doi.org/10.1016/j.tcs.2007.01.016
http://dx.doi.org/10.1016/j.tcs.2011.10.003
http://dx.doi.org/10.1016/j.tcs.2011.10.003
http://dx.doi.org/10.1016/0304-3975(77)90016-0
http://dx.doi.org/10.1016/0304-3975(77)90016-0
http://dx.doi.org/10.1145/377924.594925
http://dx.doi.org/10.1016/S0019-9958(70)90446-8
http://dx.doi.org/10.1016/S0019-9958(70)90446-8
http://dx.doi.org/10.1016/0022-0000(81)90038-6
http://dx.doi.org/10.1007/3-540-16066-3_26
http://dx.doi.org/10.1016/S0019-9958(60)90965-7
http://dx.doi.org/10.1016/S0019-9958(60)90965-7
http://dx.doi.org/10.1016/S0304-3975(00)00285-1
http://dx.doi.org/10.1016/S0304-3975(00)00285-1
http://dx.doi.org/10.1137/0214044
http://dx.doi.org/10.1137/0214044
http://dx.doi.org/10.1137/0214044
http://dx.doi.org/10.1145/321906.321913
http://dx.doi.org/10.1145/321906.321913
http://dx.doi.org/10.1016/0304-3975(94)00212-2
http://dx.doi.org/10.1016/j.tcs.2005.10.039
http://dx.doi.org/10.1016/S0019-9958(74)90839-0
http://dx.doi.org/10.1016/S0019-9958(74)90839-0
http://dx.doi.org/10.1016/S0022-0000(75)80046-8
http://dx.doi.org/10.1016/S0022-0000(75)80046-8
http://doi.ieeecomputersociety.org/10.1109/SFCS.1981.18
http://dx.doi.org/10.1093/comjnl/14.4.396
http://dx.doi.org/10.1093/comjnl/14.4.396
http://dx.doi.org/10.1016/S0019-9958(67)80007-X
http://dx.doi.org/10.1016/S0019-9958(67)80007-X
http://dx.doi.org/10.1016/0166-218X(86)90025-9

	Introduction
	Conjunctive grammars
	Three equivalent definitions
	Examples
	Normal forms

	Boolean grammars
	Intuitive definition
	Definition by language equations
	Definition by a well-founded fixpoint
	Parse trees and ambiguity

	Grammars with linear concatenation
	Representation by trellis automata
	Examples
	Limitations

	Basic parsing algorithms
	Cubic-time tabular parsing
	Square-time parsing for unambiguous grammars
	Generalized LR parsing
	Recursive descent

	Advanced approaches to parsing
	Parsing by matrix multiplication
	Parsing by convolution for unary inputs
	On parallel parsing
	Space complexity

	Theoretical topics
	Grammars over a one-symbol alphabet
	Descriptional complexity
	Undecidable properties

	Comparison of formal grammars
	Hierarchy of language families
	Closure properties
	Decision problems

	Research directions
	Nine theoretical problems
	Further topics

